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Preface 

This book arose from a course of lectures given by the first author during 
the winter term 1977/1978 at the University of Münster (West Germany). 
The course was primarily addressed to future high school teachers of 
mathematics; it was not meant as a systematic introduction to number 
theory but rather as a historically motivated invitation to the subject, 
designed to interest the audience in number-theoretical questions and 
developments. This is also the objective of this book, which is certainly not 
meant to replace any of the existing excellent texts in number theory. Our 
selection of topics and examples tries to show how, in the historical 
development, the investigation of obvious or natural questions has led to 
more and more comprehensive and profound theories, how again and 
again, surprising connections between seemingly unrelated problems were 
discovered, and how the introduction of new methods and concepts led to 
the solution of hitherto unassailable questions. All this means that we do 
not present the student with polished proofs (which in turn are the fruit of a 
long historical development); rather, we try to show how these theorems are 
the necessary consequences of natural questions. 

Two examples might illustrate our objectives. The book will be successful 
if the reader understands that the representation of natural numbers by 
quadratic forms-say, n = x 2 + dy2-necessarily leads to quadratic reci­
procity, or that Dirichlet, in his proof of the theorem on primes in 
arithmetical progression, simply had to find the analytical class number 
formula. This is why, despite some doubts, we retained the relatively 
amorphous, unsystematic and occasionally uneconomical structure of the 
originallectures in the book. A systematic presentation, with formal defini­
tions, theorems, proofs and remarks would not have suited the real purpose 
of this course, the description of living developments. We nevertheless hope 
that the reader, with the occasional help of a supplementary text, will be 



VI Preface 

able to leam a number of subjects from this book such as the theory of 
binary quadratic forms or of continued fractions or important facts on 
L-series and r -functions. 

Clearly, we are primarily interested in number theory but we present it 
not as a streamlined ready-made theory but in its historical genesis, 
however, without inordinateiy many detours. We also believe that the lives 
and times of the mathematicians whose works we study are of intrinsic 
interest; to leam something ab out the lives of Euler and Gauss is a sensible 
supplement to leaming mathematics. What was said above also applies to 
the history in this book: we do not aim at completeness but hope to stir up 
the interests of our readers by confining ourselves to a few themes and hope 
this will give enough motivation to study some of the literature quoted in 
our text. 

Many persons have contributed to this book. First of all, the students of 
the course showed a lot of enthusiasm for the subject and made it 
worthwhile to prepare a set of notes; Walter K. Bühler kindly suggested to 
publish these notes in book form and prepared the English translation. 
Gary Comell helped with the translation and suggested several mathemati­
cal improvements; many colleagues and friends contributed encouragement 
and mathematical and historical comments and pointed out a number of 
embarrassing errors. We wish to mention in particular Harold Edwards, 
Wulf-Dieter Geyer, Martin Kneser, and Olaf Neumann. It is a pleasure to 
thank them all. 

Münster, West Germany 
lune 1984 

WINFRIED SCHARLAU 

HANS OPOLKA 

Added in prooj. In early 1984, Andre Weil's Number Theory: An Approach 
Through History from Hammurapi to Legendre appeared. It contains substantial 
additional material and discussion, especially conceming the period between 
Fermat and Legendre. 
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