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To my parents 



PREFACE 

Where do solutions go, and how do they behave en route? 

These are two of the major questions addressed by the qualita

tive theory of differential equations. The purpose of this 

book is to answer these questions for certain classes of equa

tions by recourse to the framework of semidynamical systems 

(or topological dynamics as it is sometimes called). This 

approach makes it possible to treat a seemingly broad range 

of equations from nonautonomous ordinary differential equa

tions and partial differential equations to stochastic differ

ential equations. The methods are not limited to the examples 

presented here, though. 

The basic idea is this: Embed some representation of the 

solutions of the equation (and perhaps the equation itself) 

in an appropriate function space. This space serves as the 

phase space for the semidynamical system. The phase map must 

be chosen so as to generate solutions to the equation from an 

initial value. In most instances it is necessary to provide 

a "weak" topology on the phase space. Typically the space is 

infinite dimensional. 

These considerations motivate the requirement to study 

semidynamical systems in non locally compact spaces. Our 

objective here is to present only those results needed for the 

kinds of applications one is likely to encounter in differen

tial equations. Additional properties and extensions of ab

stract semidynamical systems are left as exercises. The power 

of the semidynamical framework makes it possible to character-
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ize the asymptotic behavior of the solutions of such a wide 

class of equations. 

A caveat is in order. The stability results obtained in 

many of the examples can be gotten directly without recourse 

to the abstract semidynamical system setting. Moreover, in 

some instances, sharper results can be obtained by utilizing 

special techniques and methods suitably adjusted to that 

particular equation. On the other hand, the generality of 

the semidynamical system approach allows for a greater under

standing of the unifying concepts running through all of the 

examples. 

The first three chapters are devoted to the theory of 

semidynamical systems. Virtually all of the results hold for 

a discrete time parameter as well as a continuous time para

meter. Because of their simplicity some examples of discrete 

semidynamical systems are included to illustrate the variety 

of asymptotic behavior. The remainder of the book is devoted 

to applications of the theory. The range of applications 

reflects recent mathematical activity. The choice of examples, 

though, reflects my interests and bias as well. 

The presentation is meant to be self contained (except 

for a few lapses in Chapters 4, 5, and 7, where references 

are supplied). Appendices on functional analysis and probab

ility are provided for this purpose. Definitions of terms 

not found in the text can usually be found in one of the ap

pendices. Each chapter concludes with a set of exercises and 

a section called "Notes and Comments." This provides the 

reader with the source of the results of that chapter. It 

also offers some commentary and related results. Most of the 

source material is from the late 1960's and 1970's. The 
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reader should be familiar with real analysis on the level of 

Royden [1] and ordinary differential equations on the level 

of Hirsch and Smale [1]. A little knowledge of partial diff

erential equations in Chapter 5 and Markov processes in Chap

ter 7 would be useful. The chapter dependence is as follows: 

1 
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