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Preface 

In recent years approximation theory and the theory of orthogonal polynomials 
have witnessed a dramatic increase in the number of solutions of difficult and 
previously untouchable problems. This is due to the interaction of approximation 
theoretical techniques with classical potential theory (more precisely, the theory 
of logarithmic potentials, which is directly related to polynomials and to problems 
in the plane or on the real line). Most of the applications are based on an exten
sion of classical logarithmic potential theory to the case when there is a weight 
(external field) present. The list of recent developments is quite impressive and 
includes: creation of the theory of non-classical orthogonal polynomials with re
spect to exponential weights; the theory of orthogonal polynomials with respect to 
general measures with compact support; the theory of incomplete polynomials and 
their widespread generalizations, and the theory of multipoint Pade approximation. 
The new approach has produced long sought solutions for many problems; most 
notably, the Freud problems on the asymptotics of orthogonal polynomials with 
respect to weights of the form exp(-Ixla ); the "l/9-th" conjecture on rational 
approximation of exp(x); and the problem of the exact asymptotic constant in the 
rational approximation of Ixl. 

One aim of the present book is to provide a self-contained introduction to the 
aforementioned "weighted" potential theory as well as to its numerous applications. 
As a side-product we shall also fully develop the classical theory of logarithmic 
potentials. 

Perhaps the easiest way to describe the main aspects of this work is to use the 
electrostatic interpretation of the underlying basic extremal problem. We assure the 
mathematically oriented reader that in what follows we do not use any deep con
cepts from physics, and do not appeal to anything in our "physical" interpretation 
that is not intuitively absorbable. 

The fundamental electrostatics problem concerns the equilibrium distribution 
of a unit charge on a conductor. If the conductor is regarded as a compact set 
E in the complex plane C and charges repel each other according to an inverse 
distance law, then in the absence of an external field, equilibrium will be reached 
when the total energy 

I(/L) = f flOg _l-d/L(z)d/L(t) 
Iz - tl 
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is minimal among all possible charge distributions (measures) J-L on E having 
total charge one. There is a unique distribution J-LE supported on E for which this 
minimal energy is attained; this equilibrium distribution J-L E is actually supported 
on the outer boundary of E, and its logarithmic potential 

UI1E (z) = flog _1-dJ-LE(t) 
Iz - tl 

is essentially constant on E. The facts that the support set of J-LE is known and 
that the potential U 11£ (z) is essentially constant on this set enable the use of 
Stieltjes-type inversion formulas to readily determine J-LE. 

The distribution J-LE arises in a variety of problems encountered in constructive 
analysis. For example, it describes the limiting behavior (as n -+ 00) of n points 
on E, the product of whose mutual distances is maximal. These so-called Fekete 
points provide nearly optimal choices for points of polynomial interpolation. In 
the study of orthogonal polynomials with respect to a large class of (regular) 
measures on a compact set E c R, the equilibrium measure J-LE gives the limiting 
distribution of the zeros. 

The introduction of an external field Q(z) in the electrostatics problem creates 
some significant differences in the fundamental theory, but opens much wider 
doors to applications. The problem now becomes that of minimizing the weighted 
energy 

where the weight w = e- Q , and the minimum is again taken over all unit charges 
J-L supported on E. 

The external field problem has its origins in the work of C. F. Gauss, and is 
sometimes referred to as the Gauss variation problem. O. Frostman investigated the 
problem and the Polish school headed by F. Leja made important contributions 
during the period 1935-1960 that have greatly influenced the present work. A 
rebirth of interest in the Gauss variational problem occurred in the 1980's when 
E. A. Rakhmanov and, independently, collaborators H. N. Mhaskar and E. B. Saff 
used potentials with external fields to study orthogonal polynomials with respect 
to exponential weights on the real line. 

The external field problem is often treated in the literature as an addendum 
to the classical theory-a generalization for which the similarities with the un
weighted case (Q = 0) are the main emphasis. On the other hand, this energy 
problem can be viewed as a special case of the potential theory developed for 
energy integrals having symmetric, lower-semicontinuous kernels in locally com
pact spaces. But in this generality many of the unique features of the external 
field problem, as well as its concrete applications to constructive analysis, remain 
hidden. 

Our goal in writing this book has been to present a self-contained and fairly 
comprehensive treatment of the Gauss variation problem in the plane, beginning 
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with a review in Chapter 0 on harmonic functions. This is followed by a de
tailed treatment of Frostman type for the existence and uniqueness of the extremal 
measure J-Lw satisfying 

Our analysis applies even for unbounded closed sets E, under suitable assump
tions on the weight w (or, equivalently, on the external field Q). In this early 
stage of the development we encounter one of the most glaring differences with 
the classical (unweighted) electrostatics problem; namely, the support Sw of the 
extremal measure J-Lw need not coincide with the outer boundary of E and, in fact, 
can be quite an arbitrary subset of E (depending on w), possibly with positive 
area. Determining the support set Sw and its properties are two of the main themes 
of this work that distinguish it from standard treatments in the literature. 

There are several important aspects of the external field problem (and its ex
tension to signed measures) that justify its special attention. The most striking is 
that it provides a unified approach to several (seemingly different) problems in 
constructive analysis. These include, among others, the following: 

(a) The asymptotic analysis of polynomials orthogonal with respect to a weight 
function on an unbounded interval (e.g., exponential weights of the form 
exp(-Ixla), a > 0, on R). 

(b) The asymptotic behavior (as n -+ (0) of weighted Fekete points that maximize 
the product 

n 
among all n-tuples of points (z I, ... , Zn) lying in a closed set E. 

(c) The existence and construction of fast decreasing polynomials; that is, poly
nomials Pn (x) of degree n that satisfy for a prescribed nonnegative function 
cp(x) on [-1, 1] the restrictive growth estimates 

Pn(O) = 1, IPn(x)1 ~ exp(-ncp(x» for x E [-1, 1]. 

(d) The study of incomplete polynomials of the form Ek=sakxk with s ::: en 
(e > 0). 

(e) The numerical conformal mapping of simply and doubly connected domains 
onto a disk and annulus, respectively. 

(f) A generalization of the Weierstrass approximation theorem wherein, for a 
given weight function w on a closed set E, one seeks to characterize those 
continuous functions f on E that are uniform limits of weighted polynomials 
of the form wn Pn, where the power n of the weight is the same as the degree 
of the polynomial Pn. 

(g) The asymptotic behavior of "ray sequences" of Pade approximants (interpo
lating rational functions) to Markov and Stieltjes functions. 

(h) The determination of rates of convergence of best approximating rational func
tions to certain classes off unctions f (for example, f(x) = e-X on [0, +(0». 
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(i) The mathematical modelling of elasticity problems where the shape of the 
elastic medium is distorted by the insertion of an object under pressure. 

In addition, the external field problem provides a rather natural setting for 
several important concepts in potential theory itself. These include: 

(a) Solving simultaneous Dirichlet's problems, which arises from the fact that 
the equilibrium potential UI-'w(z), with w = e-Q, solves this problem (up 
to a constant) for boundary data -Q(z) on each bounded component of the 
complement of the support set Sw. 

(b) The balayage (sweeping) of a measure v to a compact set E, which is simply 
given by the extremal measure for the external field Q(z) = -UV(z) on E. 

(c) The problem of finding the best Green potential approximation to a given 
superharmonic function with respect to an energy norm, which is given by 
the solution to a Gauss variational problem. 

(d) Solving constrained minimal energy problems for which one seeks a unit 
measure).. that minimizes the (unweighted) energy integral for unit measures 
on E subject to the constraint ).. :::: a, where a is a given positive measure 
with supp (a) = E and lIa II > 1. 

In developing the theory for potentials in the presence of an external field 
(Chapters I and II), we provide motivations and detailed proofs for many of the 
basic results from potential theory, such as generalized maximum principles, the 
Riesz decomposition theorem, the principle of domination, Evans' theorem, etc. 
These results are presented as they are needed and, as an aid for the reader, we 
provide a listing of them in the Appendix along with their locations in the text. 
Wiener's theorem and the Dirichlet problem are also treated in the Appendix. 

At the end of each of the main chapters we have included a section entitled 
"Notes and Historical References," that includes discussion of related results along 
with citations for many of the theorems presented in the text. There are, however, 
many new results and proofs that appear here for the first time, such are the ones 
that are not referenced in the Notes sections. 

While our analysis of the weighted energy problem proceeds along the lines of 
classical potential theory, alternative approaches are being developed, most notably 
by L. A. Pastur and his collaborators who use random matrix techniques (see 
Section IV.9). Furthermore, inverse spectral methods have recently been employed 
by P. Deift, T. Kriecherbauer and K. T-R. McLaughlin to derive more detailed 
information about the equilibrium distributions for certain smooth fields Q (see 
the Notes section for Chapter IV). 

The theory of weighted potentials in eN, N ~ 2, is still in its infancy relative 
to the single variable case. To introduce the reader to this vital subject we have 
included an appendix written by Thomas Bloom that contains generalizations of 
several theorems in the text to the multidimensional case. This presentation em
phasizes the role that the Monge-Ampere operator plays in extending the external 
field problem to the pluripotential setting. 
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