

Yu. Safarov D. Vassiliev

The Asymptotic Distribution of Eigenvalues of Partial Differential Operators

American Mathematical Society

Contents

Preface	xi
Chapter 1. Main Results	1
1.1. Statement of the spectral problem	1
1.2. One-term asymptotic formula for $N(\lambda)$	9
1.3. Hamiltonian billiards I: basic definitions and results	11
1.4. Hamiltonian billiards II: reflection matrix	27
1.5. Hamiltonian billiards III: Maslov index	32
1.6. Classical two-term asymptotic formula for $N(\lambda)$	37
1.7. Nonclassical two-term asymptotic formulae for $N(\lambda)$	49
1.8. Two-term asymptotic formulae for the spectral function	56
Chapter 2. Oscillatory Integrals	63
2.1. Local oscillatory integrals and pseudodifferential operators	63
2.2. Global oscillatory integrals	70
2.3. Homogeneous canonical transformations	74
2.4. Phase functions associated with homogeneous canonical transfor-	
mations	78
2.5. Restriction of phase functions to the boundary	89
2.6. Extension of phase functions from the boundary	91
2.7. Standard oscillatory integrals associated with homogeneous canon-	
ical transformations	100
2.8. Boundary layer oscillatory integrals associated with homogeneous	
canonical transformations	112
2.9. Boundary oscillatory integrals associated with homogeneous ca-	
nonical transformations	115
2.10. Parameter-dependent oscillatory integrals	119
Chapter 3. Construction of the Wave Group	129
3.1. Characteristic properties of distributions associated with the wave	
group	130
3.2. Representation of the wave group by means of oscillatory integrals:	
sufficient conditions	140
3.3. Representation of the wave group by means of oscillatory integrals:	
effective construction for manifolds without boundary	142
3.4. Representation of the wave group by means of oscillatory integrals:	~ ~-
effective construction for manifolds with boundary	148
3.5. Construction of the wave group when the source is close to the	0
boundary	161

CONTENTS

Chapter	4. Singularities of the Wave Group	167
4.1.	Singularities of Lagrangian distributions	168
4.2.	Singularity of the wave group at $t = 0$	176
4.3.	Singularities of the wave group at $t \neq 0$ for admissible pseudodif-	
	ferential cut-offs	179
4.4.	Singularities of the wave group at $t \neq 0$ for nonadmissible pseu-	
	dodifferential cut-offs	183
4 5	Singularity of the wave group at $t = 0$ when the source is close to	100
1.0.	the boundary $f(x) = 0$ when the source is close to	190
	the boundary	100
Chapter	5. Proof of Main Results	193
5.1.	Partition of the manifold M into three zones	193
5.2.	Asymptotics of the trace of the spectral projection in the interior	
	zone	198
5.3	Asymptotics of the trace of the spectral projection in the interme-	100
0.0.	diste zone	201
5.4	Asymptotics of the trace of the spectral projection in the boundary	201
0.4.	Asymptotics of the trace of the spectral projection in the boundary	205
F F	A manual tables of the second second for a time	200
0.0.	Asymptotics of the spectral function	ZZ4
Chapter	6 Mechanical Applications	229
6 1	Membranes and acoustic resonators	220
6.2	Flastic platos	220
6.3	Two and three dimensional electicity	230
0.5. 6.4	Floatie shalle	200
0.4.		239
0.3.	Hydroeiasticity	247
Appendix	A. Spectral Problem on the Half-line	
	by A. Holst	251
A.1.	Basic facts	251
A.2.	The reflection matrix	263
A.3.	Trace formulae	276
A.4.	Dependence on parameters	292
		202
Appendix	x B. Fourier Tauberian Theorems	
	by M. Levitin	297
B.1.	Introductory remarks	297
B.2.	Basic theorem	298
B.3.	Rough estimate for the nonzero singularities	300
B.4.	General refined theorem	301
B.5.	Special version of the general refined theorem	304
2.01	Special version of the general remied theorem	001
Appendix	K C. Stationary Phase Formula	307
Appendix	x D. Hamiltonian Billiards: Proofs	313
D.1	Measure of "awkward" starting points	313
D 9	Dead-end trajectories	318
D.2. D.2	Convexity and concevity	201
D.J. D /	Massurability of sats and functions	204
D.4. DF	Longtha of loops and pariodia trajectories	044 206
D.9.	Lengths of loops and periodic trajectories	320
D.6.	Masiov index	328

l

Appendix E. Factorization of Smooth Functions and Taylor-type Formulae	335
References	343
Principal Notation	349
Index	353

CONTENTS

ix