Grundlehren der mathematischen Wissenschaften 241

A Series of Comprehensive Studies in Mathematics

Editors

M. Artin S. S. Chern J. L. Doob A. Grothendieck E. Heinz F. Hirzebruch L. Hörmander S. Mac Lane W. Magnus C. C. Moore W. Schmidt D. S. Scott J. Tits B. L. van der Waerden Ş. R. S. Varadhan

Managing Editors

B. Eckmann J. K. Moser

Walter Rudin

Function Theory in the Unit Ball of \mathbb{C}^n

Springer-Verlag New York Heidelberg Berlin Walter Rudin University of Wisconsin Department of Mathematics Madison, WI 53706 USA

AMS Subject Classifications: 32-02, 31Bxx, 31Cxx, 32Axx, 32Fxx, 32Hxx

Library of Congress Cataloging in Publication Data

Rudin, Walter, 1921–
Function theory in the unit ball of Cⁿ
(Grundlehren der mathematischen Wissenschaften; 241)
Bibliography: p.
Includes index.
1. Holomorphic functions. 2. Unit ball. I. Title.
II. Series.
QA331.R863 515 80-19990

All rights reserved.

No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag.

© 1980 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1980

987654321

ISBN-13: 978-1-4613-8100-6 e-ISBN-13: 978-1-4613-8098-6 DOI: 10.1007/978-1-4613-8098-6

Preface

Around 1970, an abrupt change occurred in the study of holomorphic functions of several complex variables. Sheaves vanished into the background, and attention was focused on integral formulas and on the "hard analysis" problems that could be attacked with them: boundary behavior, complex-tangential phenomena, solutions of the $\bar{\partial}$ -problem with control over growth and smoothness, quantitative theorems about zero-varieties, and so on. The present book describes some of these developments in the simple setting of the unit ball of \mathbb{C}^n .

There are several reasons for choosing the ball for our principal stage. The ball is the prototype of two important classes of regions that have been studied in depth, namely the strictly pseudoconvex domains and the bounded symmetric ones. The presence of the second structure (i.e., the existence of a transitive group of automorphisms) makes it possible to develop the basic machinery with a minimum of fuss and bother. The principal ideas can be presented quite concretely and explicitly in the ball, and one can quickly arrive at specific theorems of obvious interest. Once one has seen these in this simple context, it should be much easier to learn the more complicated machinery (developed largely by Henkin and his co-workers) that extends them to arbitrary strictly pseudoconvex domains.

In some parts of the book (for instance, in Chapters 14–16) it would, however, have been unnatural to confine our attention exclusively to the ball, and no significant simplifications would have resulted from such a restriction.

Since the Contents lists the topics that are covered, this may be the place to mention some that might have been included but were not:

The fact that the automorphisms of the ball form a Lie group has been totally ignored.

There is no discussion of concepts such as curvature or geodesics with respect to the geometry that has these automorphisms as isometries.

The Heisenberg group is only mentioned in passing, although it is an active field of investigation in which harmonic analysis interacts with several complex variables.

Most of the refined estimates that allow one to control solutions of the $\bar{\partial}$ -problem have been omitted. I have included what was needed to present the

Henkin-Skoda theorem that characterizes the zeros of functions of the Nevanlinna class.

Functions of bounded mean oscillation are not mentioned, although they have entered the field of several complex variables and will certainly play an important role there in the future.

To some extent, these omissions are due to considerations of space—I wanted to write a book of reasonable size—but primarily they are of course a matter of personal choice.

As regards prerequisites, they consist of advanced calculus, the basic facts about holomorphic functions of one complex variable, the Lebesgue theory of measure and integration, and a little functional analysis. The existence of Haar measure on the group of unitary matrices is the most sophisticated fact assumed from harmonic analysis. Everything that refers specifically to several complex variables is proved.

I have included a collection of open problems, in the hope that this may be one way to get them solved. Some of these look very simple. The fact that they are still unsolved shows quite clearly that we have barely begun to understand what really goes on in this area of analysis, in spite of the considerable progress that has been made.

I have tried to be as accurate as possible with regard to credits and priorities. The literature grows so rapidly, however, that I may have overlooked some important contributions. If this happened, I offer my sincere apologies to their authors.

Several friends have helped me to learn the material that is presented here—in conversations, by correspondence, and in writing joint papers. Among these, I especially thank Pat Ahern, Frank Forelli, John Fornaess, Alex Nagel, and Lee Stout.

Finally, I take this opportunity to express my appreciation to the National Science Foundation for supporting my work over a period of many years, to the William F. Vilas Trust Estate for one of its Research Professorships, and to the Mathematics Department of the University of Wisconsin for being such a friendly and stimulating place to work in.

Madison, Wisconsin March 1980 Walter Rudin

Contents

List of Symbols and Notations	xi
Chapter 1	
Preliminaries	1
1.1 Some Terminology	1
1.2 The Cauchy Formula in Polydiscs	3
1.3 Differentiation	7
1.4 Integrals over Spheres	12
1.5 Homogeneous Expansions	19

Chapter 2	
The Automorphisms of B	23
2.1 Cartan's Uniqueness Theorem	23
2.2 The Automorphisms	25
2.3 The Cayley Transform	31
2.4 Fixed Points and Affine Sets	32
2.1 Timed I child and Think Sets	

Chapter 3	
Integral Representations	36
3.1 The Bergman Integral in B	36
3.2 The Cauchy Integral in B	38
3.3 The Invariant Poisson Integral in B	50

Chapter 4	
The Invariant Laplacian	47
4.1 The Operator $\tilde{\Delta}$	47
4.2 Eigenfunctions of $\tilde{\Delta}$	49
4.3 M-Harmonic Functions	55
4.4 Pluriharmonic Functions	59
	vii

Chapter 5

Boundary Behavior of Poisson Integrals	65
5.1 A Nonisotropic Metric on S	65
5.2 The Maximal Function of a Measure on S	67
5.3 Differentiation of Measures on S	70
5.4 K-Limits of Poisson Integrals	72
5.5 Theorems of Calderón, Privalov, Plessner	79
5.6 The Spaces $N(B)$ and $H^{p}(B)$	83
5.7 Appendix: Marcinkiewicz Interpolation	88

Chapter 6

Boundary Behavior of Cauchy Integrals	91
6.1 An Inequality	92
6.2 Cauchy Integrals of Measures	94
6.3 Cauchy Integrals of L ^p -Functions	99
6.4 Cauchy Integrals of Lipschitz Functions	
6.5 Toeplitz Operators	101
6.6 Gleason's Problem	110
	114

Chapter 7	
Some L^p -Topics	120
7.1 Projections of Bergman Type	120
7.2 Relations between H^p and $L^p \cap H$	126
7.3 Zero-Varieties	133
7.4 Pluriharmonic Majorants	145
7.5 The Isometries of $H^{p}(B)$	152

Chapter 8	
Consequences of the Schwarz Lemma	161
8.1 The Schwarz Lemma in B	161
8.2 Fixed-Point Sets in B	165
8.3 An Extension Problem	166
8.4 The Lindelöf–Čirka Theorem	168
8.5 The Julia-Carathéodory Theorem	174

Chapter 9	
Measures Related to the Ball Algebra	185
9.1 Introduction	185
9.2 Valskii's Decomposition	187
9.3 Henkin's Theorem	189
9.4 A General Lebesgue Decomposition	191
9.5 A General F. and M. Riesz Theorem	195

Contents

9.6	The Cole-Range Theorem	198
9.7	Pluriharmonic Majorants	198
9.8	The Dual Space of $A(B)$	202

Chapter 10	
Interpolation Sets for the Ball Algebra	204
10.1 Some Equivalences	204
10.2 A Theorem of Varopoulos	207
10.3 A Theorem of Bishop	209
10.4 The Davie-Øksendal Theorem	211
10.5 Smooth Interpolation Sets	214
10.6 Determining Sets	222
10.7 Peak Sets for Smooth Functions	229

Chapter 11	
Boundary Behavior of H^{∞} -Functions	234
11.1 A Fatou Theorem in One Variable	234
11.2 Boundary Values on Curves in S	237
11.3 Weak*-Convergence	244
11.4 A Problem on Extreme Values	247

Chapter 12	
Unitarily Invariant Function Spaces	253
12.1 Spherical Harmonics	253
12.2 The Spaces $H(p, q)$	255
12.3 \mathcal{U} -Invariant Spaces on S	259
12.4 \mathcal{U} -Invariant Subalgebras of $C(S)$	264
12.5 The Case $n = 2$	270

Chapter 13	
Moebius-Invariant Function Spaces	278
13.1 <i>M</i> -Invariant Spaces on S	278
13.2 <i>M</i> -Invariant Subalgebras of $C_0(B)$	280
13.3 <i>M</i> -Invariant Subspaces of $C(\overline{B})$	283
13.4 Some Applications	285

Chapter 14	
Analytic Varieties	288
14.1 The Weierstrass Preparation Theorem	288
14.2 Projections of Varieties	291
14.3 Compact Varieties in \mathbb{C}^n	294
14.4 Hausdorff Measures	295

Chapter 15	
Proper Holomorphic Maps	300
15.1 The Structure of Proper Maps	300
15.2 Balls vs. Polydiscs	305
15.3 Local Theorems	309
15.4 Proper Maps from B to B	314
15.5 A Characterization of B	319
Chapter 16	
The $\bar{\partial}$ -Problem	330
16.1 Differential Forms	330
16.2 Differential Forms in \mathbb{C}^n	335

16.3	The $\overline{\partial}$ -Problem with Compact Support	338
16.4	Some Computations	341
16.5	Koppelman's Cauchy Formula	346
16.6	The $\overline{\partial}$ -Problem in Convex Regions	350
16.7	An Explicit Solution in B	357

Chapter	1	7
---------	---	---

The Zeros of Nevanlinna Functions	364
17.1 The Henkin-Skoda Theorem	364
17.2 Plurisubharmonic Functions	366
17.3 Areas of Zero-Varieties	381

Chapter 18

Tangential Cauchy–Riemann Operators	387
18.1 Extensions from the Boundary	387
18.2 Unsolvable Differential Equations	395
18.3 Boundary Values of Pluriharmonic Functions	397

Chapter 19	100
Open Problems	403
19.1 The Inner Function Conjecture	403
19.2 RP-Measures	409
19.3 Miscellaneous Problems	413
Bibliography	419
Index	431

List of Symbols and Notations

The numbers that follow the symbols indicate the paragraphs in which their meanings are explained. For example, 10.4.2 means Chapter 10, Section 4, paragraph 2.

Sets

\mathbb{C}, \mathbb{C}^n	1.1.1	(Z), (P)	10.1.1
B_n, B	1.1.2	(I), (PI)	10.1.1
$S = \partial B_n$	1.1.2	(N), (TN)	10.1.1
<i>U</i> , <i>T</i>	1.1.2	$V(\zeta, \delta)$	10.4.2
D(a;r)	1.1.5	(D)	10.6.1
U^n, T^n	1.1.5	$E_1(f),\ldots,E_3(f)$	11.4.2
$E(a, \varepsilon)$	2.2.7	Q	12.3.1
$Q(\zeta, \delta)$	5.1.1	D_k	12.4.3
$D_{\alpha}(\zeta)$	5.4.1	$\Sigma(\Omega)$	12.4.3
$\Omega(E, \alpha)$	5.5.1	Δ, Δ΄	14.1.1
Z(f)	7.3.1	D_z	15.3.1
E _c	8.5.3	Δ	16.6.1

Function Spaces

$L^p, C^k, C(X)$	1.1.1	M,	9.1.2
$H(\Omega)$	1.1.4	A^{\perp}	9.1.4
$(L^p \cap H)(B)$	3.1.1	A*	9.2.1
A(B)	3.2.3	Re A	9.5.2
X_{λ}	4.2.1	$C_{R}(X)$	9.5.2
$C_0(B)$	4.2.6	HM, TS	9.8.1
RP(Ω)	4.4.1	Н	10.6.4
$C^{\infty}(\{0\})$	4.4.3	$A(\Omega)$	10.6.7
$H_{\varphi}(B), H^{p}(B)$	5.6.1	$A^m(B)$	10.7.1
N(B)	5.6.1	$A^{\infty}(B)$	10.7.1
$A(S), H^p(S)$	5.6.7	$\mathcal{P}_k, \mathcal{H}_k$	12.1.1
$L \log L$	6.3.2	H(p,q)	12.2.1
$H^{\infty}_{E}(B)$	6.6.2	E_{Ω}, X_{Ω}	12.3.1
$A(B, E, \{\alpha\})$	6.6.2	$\operatorname{conj} A(S)$	13.1.3

$(LH)^{p}(\Omega)$ l^{∞}, c_{0} $C_{0}(\mathbb{C})$ $C(X)^{*}$ $M(X)$	7.4.1 7.4.5 7.5.2 9.1.2 9.1.2	plh(S) P(B) plh(B) conj A(B) W, Ŵ N*(B)	13.1.3 13.3.1 13.3.1 13.3.1 19.1.6 19.1.11
Maximal Functions			
$egin{array}{c} M\mu\ M_lpha F \end{array}$	5.5.2 5.4.4	$M_{\rm rad}F$	5.4.11
Kernels and Transform	S		
$K(z, w) K[f] C(z, \zeta) C[f], C[\mu] P(z, \zeta) P[f], P[\mu]$	3.1.1 3.1.1 3.2.1 3.2.1 3.3.1 3.3.1	$K_{s}(z, w)$ $T_{s} f$ $K_{z}(w)$ $K_{s}(z, \zeta)$ $K_{b}(z, \zeta)$ Tf	7.1.1 7.1.1 12.2.5 16.5.1 16.5.2 16.7.2
Derivatives			
$egin{aligned} D_j, ar{\mathcal{D}}_j \ D^lpha \ D^lpha \ \partial^lpha z_j, \partial/\partial ar{z}_j \ \Delta \ F' \ ar{\lambda} \ \mathscr{D}\mu \end{aligned}$	1.2.2 1.2.2 1.3.1 1.3.4 1.3.6 4.1.1 5.3.3	$egin{aligned} & \mathcal{R}f \ d \ \partial, \overline{\partial} \ \Delta_{\mathrm{rad}} \ \Delta_{\mathrm{tan}} \ L_{ij}, \overline{L}_{ij} \end{aligned}$	6.4.4 16.1.3 16.2.2 17.2.2 17.2.2 18.3.1
Differential Forms			
$ \begin{array}{c} \wedge \\ dx_I \\ \alpha_T \end{array} $	16.1.1 16.1.1 16.1.4	$dz_i, d\overline{z}_i, dz_I, d\overline{z}_J$ $\omega(z), \omega_j(z), \omega'(z)$	16.2.1 16.4.1
Measures			
ν σ τ	1.4.1 1.4.1 2.7.6	$egin{array}{l} \mu , \ \mu\ \ \mu \leqslant \sigma, \mu \perp \sigma \ \mu_a, \mu_s \end{array}$	5.2.1 5.2.1 12.2.4

xii

Other Symbols

$\langle z, w \rangle$	1.1.2	$\ f\ _p$	5.6.1
	1.1.2	$\Delta(\zeta, \omega, \alpha, \delta)$	6.1.2
α , α!	1.1.6	$T_{oldsymbol{arphi}}$	6.5.1
z^{α}	1.1.6	$\omega_{\varphi}(t)$	6.5.1
f_{ζ}	1.2.5	V_{φ}	6.5.4
JF, J _R F	1.3.6	ρf	7.2.3
O(2n)	1.4.1	Eg	7.2.3
U	1.4.6	n_f, N_f	7.3.2
Ι	2.1.1	$\ \ f\ \ _p$	7.4.3
φ_a	2.2.1	F_x, F^y	9.4.1
$\ f\ _{\infty}$	3.2.3	π_{pq}	12.2.4
u,	3.3.4	[f, g]	12.2.4
M	3.3.6	$\mu(p,q;r,s)$	12.4.3
<i>f</i> #	4.2.1	$g_{\alpha}(z,w)$	12.5.1
$g_{\alpha}(z)$	4.2.2	#(w)	15.1.3
d(a, b)	5.1.1	ρ	15.5.1
A_3	5.2.2	N(w)	15.5.1
$z \cdot w$	5.4.2	H_w, P_w, Q_w	15.5.1
$T_{\zeta} T_{\zeta}^{\mathbb{C}}$	5.4.2	$\partial \Phi$	16.1.5
K-lim	5.4.6	M(u)	17.2.3
g*	5.5.8	A(E)	17.3.1
Ĵ _r	5.6.1	A(V)	17.3.3
<i></i>		$(\#_i f)(w)$	17.3.3