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Foreword 

Dr E.G. Peter Rowe had almost completed writing this book when his life 
was brutally terminated in the Yemen in December 1998. 

Peter came to Durham from Canada via London in 1964 and quickly be
came a very popular and engagingly eccentric member of our Department. 
He was friendly and generous, informal, charitable, warm and full of diverse 
interests which, apart from mathematics and physics, ranged from anthro
pology and archaeology to foreign cultures and travel. This led him to spend 
his sabbatical leave in places such as northern Nigeria. His interest in other 
people's cultures took him to many parts of the world (from Ladakh in North 
West India, to many places in Africa, motorbiking in Saskatchewan, Canada 
and South Africa and finally to the fatal trip to Yemen). 

Peter was witty and was not afraid to speak his mind; at our Departmental 
meetings we now miss his throw-away but very much to-the-point comments 
and suggestions. 

In his teaching and research Peter was somewhat unconventional. He did 
not follow fashionable trends in research but worked on what interested him 
most, namely, the geometrisation of physics. 

He considered refereeing of research papers to be an important task, writ
ing long reports full of helpful suggestions to the authors. Peter also took his 
teaching seriously. His courses, often perceived as difficult by the students, 
were always quite advanced, as if designed to draw the very best from his 
audience. His view was that it was better to say something new and stimu
lating to the interested students than show routine steps to the uninterested 
ones. 

The present book grew out of his course on special and general relativity 
given to our third year students. I first became aware of Peter's approach 
to relativity when, having taught a similar course before him, I was asked 
to check his examination questions. While some of them were routine, oth
ers demanded deeper thought and when I looked at his solutions I became 
aware of the merits of his more geometric approach. I was among those who 
encouraged him to write a book in order to make this approach available to 
a wider audience. 

Peter's book puts an emphasis on geometry in the description of physical 
phenomena in Minkowski spacetime. In this it emphasises the covariance 
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properties of the equations of motion, trying as much as possible to avoid 
working in any particular frame of reference. And the book achieves this 
aim, probably, more than any other book that I know. 

I am very pleased that Springer-Verlag have published Peter's book. The 
book will not only help many people to understand physics in a more geo
metrical setting, but also it will be a lasting reminder of our colleague and 
friend, complementing our personal memories of him. 

Wojtek J. Zakrzewski 
University of Durham 



Preface 

This book is not meant for the complete beginner in special relativity, nor 
for anyone wanting an account of the numerous and interesting experiments 
that support the theory. Instead, it is intended to be a description of the 
geometry of spacetime, and an aid in the creation and development of in
tuition in four-dimensional Minkowski space. The emphasis on the geometry 
means an emphasis on the absolutes which underlie relative descriptions. For 
example, the Poincare transformation links different relative sets of coordi
nates, xfJ., x'fJ., but the underlying absolute is simply a point P in spacetime 
(the coordinates are the relative descriptions). The deepest understanding, 
perhaps the only understanding, of relativity and spacetime is in terms of the 
geometrical absolutes, and this is what the book seeks to develop. Whereas 
the beginner in special relativity must have help in making the transition be
tween his nonrelativistic view of physics as a time-development in space (his 
space) to a four-dimensional view of physics as a complete history in space
time, it is hoped that the reader of this book is ready to study the subject 
in its final, unified (and beautiful) form. 

The mathematical prerequisites for the early chapters of the book are 
very few, just linear algebra and elementary geometry (done using vectors 
and a scalar product). For the later chapters multivariable calculus and or
dinary differential equations are often needed. No detailed knowledge of the 
experimental background to relativity is needed, nor any detailed knowledge 
of electromagnetism, but in both these areas, the more sophistication and 
sympathy is available for the subjects, the better. 

The book aims to cover the most interesting topics requiring special rela
tivity. It is an outgrowth of lectures on special and general relativity given to 
final year undergraduate students of theoretical physics in the Department 
of Mathematics. It could be presumed that the students had all had half a 
dozen or a dozen lectures in earlier years covering the experimental founda
tions of special relativity and the first, surprising consequences of Einstein's 
new kinematics. However, the book goes well beyond what was ever taught 
in practice. Although in a real sense special relativity is the culmination of 
classical physics, and worthy on that account of detailed study, in the lec
ture theatre time is limited and the attractions of gravity, with its curved 
spacetime, become overwhelming. In practice, a natural climax for special 
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relativity is the definition of the energy tensor (which becomes the source of 
gravitational curvature) and its use in deriving equations of motion. Some 
of the more difficult aspects of the energy tensor, and most areas of electro
magnetism, were left for self study (in the future). The material in the book, 
therefore, is partly at an undergraduate level and partly at a postgraduate 
level. 

In the first chapter, Spacetime, the idea of a four-dimensional space having 
special coordinates (arising from the inertial frames of reference) is developed. 
An attempt is made to distinguish between the mathematical side of the 
exposition, where clarity and logic can be expected, and the real-world side, 
still partly unknown and mysterious, where our understanding advances in a 
series of temporary world views. The present model is described in natural 
language (not mathematical); it is a familiar world of clocks and spatial 
frameworks, but mysteriously without gravity. The mathematics we develop 
is put into correspondence with this model. The Lorentz transformation and 
the Poincare transformation are discussed (as distinct from being postulated, 
or derived from an artificial starting point). The importance of the lightcone 
in the theory is exemplified by the way it creates a significant division into 
regions of the spacetime around any given event. In the whole of the chapter, 
the emphasis is on spacetime and how we can begin to picture events and 
processes (and inertial frames, which may be relative yet are also physical 
objects) in it. 

In the second chapter, the most important one for building intuition 
in Minkowski space, vectors in spacetime are defined as transformations of 
points in spacetime (the geometrical or absolute concept), simply expressed 
in terms of the inertial frames, which both contribute to the definition and 
provide the relative expressions of the concept. The scalar product of vectors 
is constructed to provide the vector expression of the division of spacetime 
determined by the light cone. All the famous kinematical effects can be given 
completely transparent discussions in terms of spacetime diagrams and simple 
vector geometry. 

(The first time I taught the course on which this book is based, I at
tempted to begin with a discussion of vectors in Minkowski spacetime, with
out any discussion of spacetime as a manifold. Only a few students found 
this direct approach attractive and were able to build a useful intuition from 
it. Student discontent resulted in what is now Chapter 1 to fill in all the 
background material.) 

The third chapter, Asymptotic Momentum Conservation, is devoted to 
the four-momentum of elementary particles and the relations that follow 
from the simple idea of equating momentum in the past with momentum 
in the future. All relations can be expressed in purely geometrical terms. The 
definition of the centre of momentum frame is particularly simple when it is 
expressed by its geometrically defining property (rather than in terms of its 
relation with other, irrelevant frames). 
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In Chapter 4, covectors and dyadics, which are generalisations of vectors, 
are defined and their properties developed. The gradient of scalar functions 
in spacetime is defined as a covector, then converted to a vector, then gener
alised to the gradient of vector fields and beyond. The concept of volume is 
discussed, as is the divergence theorem in spacetime. 

In Chapter 5, the geometrical formulation of electromagnetism is given. 
The early sections deal with the decomposition of the field dyadic into relative 
electric and magnetic fields, and the relation of the different expressions of 
Maxwell's equations. The geometrical discussion of charge density and three
current is given in terms of a model of charged dust. Conservation of charge 
then has a visualisable form. The electomagnetism of point particles is begun. 
Because the consideration of point particles involves delta functions, the topic 
is technically more difficult and may be omitted at a first reading. 

The energy tensor is the subject of Chapter 6. The meaning of its different 
components is developed with the example of flowing dust. Local conserva
tion of four-momentum is expressed by the vanishing of the divergence of 
the energy tensor. The equation of motion for flowing, charged dust can be 
derived from this condition. The general definition of the energy tensor can 
be developed from a Lagrangian in those cases where the equations of motion 
can be derived from a variational principle. 

A point particle with an accelerating timelike worldline creates some spe
cial, peculiarly relativistic problems. It is not self-evident how to define the 
time development of the rest frame. Two solutions, the Fermi-Walker trans
ported frame and the frame which is boosted from the laboratory, both cor
respond, nonrelativistically, to the unique "nonrotating" frame of Newtonian 
mechanics. Yet there is a relative rotation between them, the Thomas preces
sion. These problems and their solutions, and the equation of motion of the 
spin of a point particle with a magnetic moment, are discussed in Chapter 
7* . 

After every chapter, but especially the first four, are many exercises and 
problems which supply lots of opportunity to practise the skills and tech
niques appropriate to special relativistic geometry. And at the very end of 
each chapter are listed some references for supplementary reading on partic
ular points. No attempt has been made to provide a complete bibliography. 

E.G.P.R 
University of Durham 

England 

• Chapter 7 was incomplete at the time of the author's death, and so is not included 
in the present volume. 
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