Universitext

Editorial Board (North America):

J.H. Ewing
F.W. Gehring
P.R. Halmos

Universitext

Editors (North America): J.H. Ewing, F.W. Gehring, and P.R. Halmos

Berger: Geometry I, II (two volumes)
Bliedtner/Hansen: Potential Theory
Booss/Bleecker: Topology and Analysis
Chandrasekharan: Classical Fourier Transforms
Charlap: Bieberbach Groups and Flat Manifolds
Chern: Complex Manifolds Without Potential Theory
Cohn: A Classical Invitation to Algebraic Numbers and Class Fields
Curtis: Abstract Linear Algebra
Curtis: Matrix Groups
van Dalen: Logic and Structure
Devlin: Fundamentals of Contemporary Set Theory
Edwards: A Formal Background to Mathematics I a/b
Edwards: A Formal Background to Mathematics II a/b
Emery: Stochastic Calculus
Fukhs/Rokhlin: Beginner's Course in Topology
Frauenthal: Mathematical Modeling in Epidemiology
Gardiner: A First Course in Group Theory
Gårding/Tambour: Algebra for Computer Science
Godbillon: Dynamical Systems on Surfaces
Goldblatt: Orthogonality and Spacetime Geometry
Humi/Miller: Second Course in Order Ordinary Differential Equations
Hurwitz/Kritikos: Lectures on Number Theory
Iverson: Cohomology of Sheaves
Kelly/Matthews: The Non-Euclidean Hyperbolic Plane
Kostrikin: Introduction to Algebra
Krasnoselskii/Pekrovskii: Systems with Hysteresis
Luecking/Rubel: Complex Analysis: A Functional Analysis Approach
Marcus: Number Fields
McCarthy: Introduction to Arithmetical Functions
Meyer: Essential Mathematics for Applied Fields
Mines/Richman/Ruitenburg: A Course in Constructive Algebra
Moise: Introductory Problem Course in Analysis and Topology
Montesinos: Classical Tesselations and Three Manifolds
Nikulin/Shafarevich: Geometries and Groups
Øksendal: Stochastic Differential Equations
Rees: Notes on Geometry
Reisel: Elementary Theory of Metric Spaces
Rey: Introduction to Robust and Quasi-Robust Statistical Methods
Rickart: Natural Function Algebras
Rotman: Galois Theory
Samelson: Notes on Lie Algebras
Smith: Power Series From a Computational Point of View
Smoryński: Self-Reference and Modal Logic
Stroock: An Introduction to the Theory of Large Deviations
Sunder: An Invitation to von Neumann Algebras
Tondeur: Foliations on Riemannian Manifolds
Verhulst: Nonlinear Differential Equations and Dynamical Systems
Zaanen: Continuity, Integration and Fourier Theory

Joseph Rotman

Galois Theory

Joseph Rotman
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
USA

Editorial Board (North America):

J.H. Ewing	F.W. Gehring	P.R. Halmos
Department of Mathematics	Department of Mathematics	Department of Mathematics
Indiana University	University of Michigan	Santa Clara University
Bloomington, IN 47405	Ann Arbor, MI 48109	Santa Clara, CA 95053
USA	USA	USA

Mathematics Subject Classification (1980): 12-01, 12F10

Library of Congress Cataloging-in-Publication Data
Rotman, Joseph J.
Galois theory / Joseph Rotman.
p. cm.-(Universitext)

Includes bibliographical references.

1. Galois theory. I. Title.

QA171.R668 1990
512'.3-dc20 90-9740
Printed on acid-free paper.
© 1990 Springer-Verlag New York Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera-ready copy prepared using $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$.

987654321

To my teacher Irving Kaplansky

Preface

This little book is designed to teach the basic results of Galois theoryfundamental theorem; insolvability of the quintic; characterization of polynomials solvable by radicals; applications; Galois groups of polynomials of low degree-efficiently and lucidly. It is assumed that the reader has had introductory courses in linear algebra (the idea of the dimension of a vector space over an arbitrary field of scalars should be familiar) and "abstract algebra" (that is, a first course which mentions rings, groups, and homomorphisms). In spite of this, a discussion of commutative rings, starting from the definition, begins the text. This account is written in the spirit of a review of things past, and so, even though it is complete, it may be too rapid for one who has not seen any of it before. The high number of exercises accompanying this material permits a quicker exposition of it. When I teach this course, I usually begin with a leisurely account of group theory, also from the definition, which includes some theorems and examples that are not needed for this text. Here I have decided to relegate needed results of group theory to appendices: a glossary of terms; proofs of theorems. I have chosen this organization of the text to emphasize the fact that polynomials and fields are the natural setting, and that groups are called in to help.

A thorough discussion of field theory would have delayed the journey to Galois's Great Theorem. Therefore, some important topics receive only a passing nod (separability, cyclotomic polynomials, norms, infinite extensions, symmetric functions) and some are snubbed altogether (algebraic closure, transcendence degree, resultants, traces, normal bases, Kummer theory). My belief is that these subjects should be pursued only after the reader has digested the basics.

My favorite expositions of Galois theory are those of E. Artin, Kaplansky, and van der Waerden, and I owe much to them. For the appendix on "oldfashioned Galois theory," I relied on recent accounts, especially [Edwards], [Gaal], [Tignol], and [van der Waerden, 1985], and older books, especially [Dehn] (and [Burnside and Panton], [Dickson], and [Netto]). I thank my colleagues at the University of Illinois, Urbana, who, over the years, have clarified obscurities; I also thank Peter Braunfeld for suggestions that im-
proved Appendix 3 and Peter M. Neumann for his learned comments on Appendix 4.

I hope that this monograph will make both the learning and the teaching of Galois theory enjoyable, and that others will be as taken by its beauty as I am.

To the Reader

Regard the exercises as part of the text; read their statements and do attempt to solve them. A star before an exercise indicates that it will be mentioned elsewhere in the text, perhaps in a proof. A result labeled Theorem 5 is the fifth theorem in the text; Theorem A5 is the fifth theorem in Appendix 2 (group theory); Theorem B5 is the fifth theorem in Appendix 3 (ruler-compass constructions).

Contents

Preface vii
To the Reader ix
Rings 1
Homomorphisms and Ideals 7
Quotient Rings 10
Polynomial Rings over Fields 12
Prime Ideals and Maximal Ideals 17
Finite Fields 20
Irreducible Polynomials 22
Classical Formulas 25
Splitting Fields 28
Solvability by Radicals 33
The Galois Group 35
Primitive Roots of Unity 38
Insolvability of the Quintic 41
Independence of Characters 43
Galois Extensions 46
Fundamental Theorem of Galois Theory 48
Applications 50
Galois's Great Theorem 54
Discriminants 56
Galois Groups of Quadratics, Cubics, and Quartics 59
Epilogue 64
Appendix 1. Group Theory Dictionary 67
Appendix 2. Group Theory Used in the Text 69
Appendix 3. Ruler-Compass Constructions 85
Appendix 4. Old-fashioned Galois Theory 93
References 103
Index 105

