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To Donna 



Preface 

This book is a thorough introduction to linear algebra, for the graduate 
or advanced undergraduate student. Prerequisites are limited to a 
knowledge of the basic properties of matrices and determinants. 
However, since we cover the basics of vector spaces and linear 
transformations rather rapidly, a prior course in linear algebra (even at 
the sophomore level), along with a certain measure of "mathematical 
maturity," is highly desirable. 

Chapter 0 contains a summary of certain topics in modern algebra 
that are required for the sequel. This chapter should be skimmed 
quickly and then used primarily as a reference. Chapters 1-3 contain a 
discussion of the basic properties of vector spaces and linear 
transformations. 

Chapter 4 is devoted to a discussion of modules, emphasizing a 
comparison between the properties of modules and those of vector 
spaces. Chapter 5 provides more on modules. The main goals of this 
chapter are to prove that any two bases of a free module have the same 
cardinality and to introduce noetherian modules. However, the 
instructor may simply skim over this chapter, omitting all proofs. 
Chapter 6 is devoted to the theory of modules over a principal ideal 
domain, establishing the cyclic decomposition theorem for finitely 
generated modules. This theorem is the key to the structure theorems 
for finite dimensional linear operators, discussed in Chapters 7 and 8. 

Chapter 9 is devoted to real and complex inner product spaces. 
The emphasis here is on the finite-dimensional case, in order to arrive 
as quickly as possible at the finite-dimensional spectral theorem for 
normal operators, in Chapter 10. However, we have endeavored to 
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state as many results as is convenient for vector spaces of arbitrary 
dimension. 

The second part of the book consists of a collection of independent 
topics, with the one exception that Chapter 13 requires Chapter 12. 
Chapter 11 is on metric vector spaces, where we describe the structure 
of symplectic and orthogonal geometries over various base fields. 
Chapter 12 contains enough material on metric spaces to allow a unified 
treatment of topological issues for the basic Hilbert space theory of 
Chapter 13. The rather lengthy proof that every metric space can be 
embedded in its completion 'may be omitted. 

Chapter 14 contains a brief introduction to tensor products. In 
order to motivate the universal property of tensor products, without 
getting too involved in categorical terminology, we first treat both free 
vector spaces and the familiar direct sum, in a universal way. Chapter 
15 is on affine geometry, emphasizing algebraic, rather than geometric, 
concepts. 

The final chapter provides an introduction to a relatively new 
subject, called the umbral calculus. This is an algebraic theory used to 
study certain types of polynomial functions that play an important role 
in applied mathematics. We give only a brief introduction to the 
subject -emphasizing the algebraic aspects, rather than the 
applications. This is the first time that this subject has appeared in a 
true textbook. 

One final comment. Unless otherwise mentioned, omission of a 
proof in the text is a tacit suggestion that the reader attempt to supply 
one. 

Steven Roman Irvine, Ca. 
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