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INTRODUCTION

There are certain generalities about approximation theory that will be useful
in our later, more detailed study of specific approximation techniques. The
natural setting for these general results is a normed linear space. Linear spaces
have become familiar objects in mathematics, and so we assume that the
reader 1s familiar with their definition and most elementary properties. We
shall take the scalars to be the real numbers unless some other field is specified.

Let ¥ be a linear space. We recall that a norm is a function from V into the
nonnegative real numbers. This function is written |-| and satisfies the
following three properties:

(i) Izl = 0 with equality if and only if v = 0.
(i) lAav] = |A] o] for any scalar A. (I.1)
{i11) le + w]| < |el + fwl (the Triangle Inequality).

The norm gives us a notion of distance in V. If w, v € V, then the distance from
wtov(orvtow)is [v — wl.

We are now in a position to present the general setting for much of approxi-
mation theory. Let ¥ be a subset of V, then, given v € V, the approximation
problem, baldly stated, is: Find a w € W whose distance from ¢ is least; that is,
find w* € Wsuch that [¢ — w| is least for w = w*. Such a w* we call a best
approximation to v out of W. Problems arise immediately. Is there such a
w*? If there is, is there only one? Since, as we shall see, many of the most
widely studied and used methods of approximation are instances of this general
approximation problem, we shall save much duplication of effort by obtaining
some results in the general situation.

We turn first to the existence question. We have

THEOREM 1.1. If V is a normed linear space and W a finite-dimensional sub-
space of V, then, given v € V, there exists w* € W such that

lv — w*[ < jo — w|
for all we W.

Proof. Since 0 € W, it is a competitor for best approximation to v out of
W. Its distance from v is v — O] = |v]. If [v — w| > [v], we are, therefore,

1
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Introduction 5

polynomials (of any degree). Clearly, W is not finite-dimensional (if it were,
what could its dimension be?). We wish to show that f(x) = 1/(1 — x) has no
best approximation in the uniform sense on [0, 4] out of W. Note that, given
e > 0, there exists N such that

(X)) — (1 +x+ x4+ ... +xY)] <g¢ 0<x=<i.

Hence, if there were a best uniform approximation to f(x) out of W, say p*,
it would have to satisfy

[If =P * H = Di
which implies that

an impossibility.
Suppose now that W is a subspace of V and let W* be the set of best
approximations to a given v € ¥ out of W. (Theorem I.1 gives us a condition

under which W* is not empty.) We wish to prove that W* is a convex set. We
recall that a set, S, 1n a linear space 1s convex if 5;, 5; € § implies that

Ay + Agso € S
if A, and A, are nonnegative and
A+ A =1,
If S is empty or consists of one point, then it is clearly convex.

THEOREM 1.2, Ifve Vand W is a subspace of V, the set of best approxima-
tions to v out of W, call it W*, is convex.

Proof. If W* is empty, the theorem is true. Suppose that w¥, wi € W*;
then
e = wif = v — wz]| = p.
Suppose A;, A; = 0and A; + A; = 1; then

lo = Aawi + w3 = (Ao — wl) + Aa(v — wi)
=< }*1“!" — ""ﬂl + »"*2"” - “";H = (A; + A)p = p.

Thus, A, wT + A,wi € W*, and so W* is convex. ||

Theorem I.2 has the consequence that, if there are two distinct best approxi-
mations out of W to v, there are infinitely many (in fact, uncountably many)
best approximations.

A final general result gives a criterion that insures that, if there is a best
approximation, there is only one. The normed linear space ¥ is said to have a
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14 UNIFORM APPROXIMATION [Ch. 1

But (tf — 5)® = ¢* — 25t + 52; hence

Bm(('r - 5)2; 5) e Bm(r.'l; 3} o 253#(“ 5) -+ Snﬂm(lg -5') = S(l — E)

in view of (1.1.6), (1.1.7), and (1.1.8).
For0<s<1,
0<s(l —s5)<i;

hence, (1.1.12) implies that for0 < s < 1

M

|ﬁ(3) — B, (h; S]{ <& + m* (1.1.13)

Now, if we choose &; = ¢/2, then (1.1.5) follows for any m, satisfying

M
Mo > §oe
In particular, then,
|g(t) — Bn(g;1)] <e, O=<st<1,

and the theorem is proved by taking p(x) = B, (g; (x — a)/{(b — a)).

The Bernstein polynomials provide us with explicit approximations to a
given continuous function. We have just seen that the sequence {B,.(h; 1)}
converges uniformly to the continuous k() on [0, 1]. The next question to
consider 1s: How good an approximation can be obtained out of P,? We first
obtain a bound for the error

max |h(r) — By(h; 1)|.
0st<1

To this end, we need some more detailed information about continuous
functions. Let f(x) be defined on [a, b], the modulus of continuity of f(x) on
[a, b, «(8), is defined for 8 > 0 by

w(@ = sup |f(x) — f(x2)].

.1:‘1 ..-t:Et’auh]I
|xy —xg| <4

Note that the modulus of continuity depends on 8, the function f, and the
interval [a, b], so that «(8) is shorthand for «(/f; [a, b]; 8). We need some
properties of the modulus of continuity.

LemMma 1.1. If0 < 8, < 8,, then w(8,) < w(8,).
LemMa 1.2.  f(x) is uniformly continuous on [a, b] if and only if
lim w(8) = 0.

d=0
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18 UNIFORM APPROXIMATION [Ch. 1

where g, @y, ..., @y, by, ..., b, are the Fourier coefficients of g(#) defined in
(1.1.17Yand py ny ...y Pans = 1,2,... are any given real numbers.

LemMma 1.4, If g(0) is continuous on —= < 0 < = and has period 2, then

0 6) = [ g + Oun(é) o4, (1.1.19)
where
(@) =3+ D puscosks. (1.1.20)

Proof. 1f we substitute (1.1.17) into (1.1.18) and recall the identity
cos A cos B + sin A sin B = cos (4 — B), we obtain
a-8

0e: 0 =1 [ s — 0 ds =2 [ g(r+ ) dr.

-8=
But both g and u, have period 2=; hence

7 s+ u@dr =1 g+ O ar.

mw el

Thus,
0@ 0 =~ [ glr + Oulr) dr,

which was to be proved. |
Lemma 1.5
6] <Z|sinf] for O0<|8 <Z.
2 2
Proof. The second derivative of —sin 8 is positive for 0 < 8 < =/2; hence
—sin 8 is a convex function and the point (8, —(2/m)6) of the chord joining

(0, 0) and (=/2, —1) cannot be below the point (8, —sin 8). Thus, —(2/7)6=
—sin 8 for 0 < @ < =/2, and the lemma follows. |

LemMa 1.6
sin @ < 8, 8=0.

Proof. Let k(f) = @ — sin . Then by the mean-value theorem there
exists £, 0< £ < 8 such that k() — k(0) = 6k'(¢) or # — sin @ =
(1l —cosé) =0. |

LemMMa 1.7. Suppose py ny ..., Pa.n t0 be chosen in such a way that
u.(¢) = 0, —-r < ¢ <7, (1.1.21)
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22 UNIFORM APPROXIMATION [Ch. 1

Suppose that f(x)e C[—1, 1]. Then g(6) = f(cos #) is continuous on
0 < @ <m and we defineiton —n < 8 < 0 by g(8) = g(— ) to obtain an
even function, continuous on [—=, ] having period 2n. Since g() is even, it
has a best uniform approximation by trigonometric polynomials of degree at
most n which is also even (cf. Exercise 1.1), call it . An even trigonometric
polynomial of degree » has the form

q:(ﬂ)=%+a1cnsﬂ+ .+ 4+ @, cosnb.

That is, all the sine terms have zero coefficients. It is easy to verify (cf.
Exercise 1.6) that cos k@ is a polynomial in cos & of degree at most k; hence,

Q:(ﬂ) = du +- dlﬂﬂﬁﬂ -+ dg(cns ﬂ]= o R dn{ﬂﬂﬁ ﬂ]n,

and, if we put |
p:(x)=d¢ +d1x+ e o ﬂ'nx",

then according to (1.1.26) and Exercise 1.4

max |/() - pCo| < 6w (g [—mwli7) < 6w (£ [-113:3):

Finally, then, we have established

THEOREM 1.4 (JACKSON'S THEOREM). If fe C[—1, 1), then

E(f; [-1,1]) < 6w (%) (1.1.28)

This is our main result, and we turn at once to its immediate consequences.

CoroLLARY 1.4.1. If fe Cla, b), then

ELf: (@8] < 6w (*5-2):
Proof. Apply Exercise 1.7 to the result of Theorem 1.4.
CoRrOLLARY 1.4.2, Iffelipge on [—1, 1], then
E(f;[-1,1]) < 6Kn~%,
CoroLLARY 1.4.3. If|f'(x)| < M for —1 < x £ 1, then

E(fi[—-1,1]) < 6Mn~*,
Proof. See Exercise 1.8.
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26 UNIFORM APPROXIMATION [Ch. 1

Theorem 1.6 is just a foreshadowing of the true state of affairs, however. As
we shall show next, the curve y = e(x) must touch the lines y = + E, (/)
alternately at least n + 2 times, and this property characterizes the best uni-

form approximation of a continuous function by a polynomial of degree at
most n. A set of k 4 1 distinct points xg, ..., X, satisfyinga < x, < x; <
+ < Xj-y <Xx < biscalled an alternating set for the error function f — p,

if
f(x) =P = 1S —padls J=0,...,k (1.2.4)
and

(x)) — pa(x))] = —[f(xX541) — Pa(X543))s  J=0,...,k— 1.
(1.2.5)
THEOREM 1.7. Suppose fe Cla, b]; p¥ is a best uniform approximation on
(a, b] to f out of P, if and only if there exists an alternating set for f — px

consisting of n + 2 points.
Proof. (1) Suppose xg,..., X,,; form an alternating set for f — pZ. We
show that p¥ is a best approximation. If it is not, then there exists g, € P, such

that
I/ — aal < |f — P&l (1.2.6)

Hence, in particular, since x,, ..., X,,; form an alternating set,

|f(x) — gu(x)] < | f = prl|l = |f(x) — pr(x)], i=0,...,n+1

(1.2.7) and (1.2.5) imply that the difference
(x) = pa(x)] = [f(x) = ga(x))] = galx)) — pr(x))

alternates in sign as j runs from 0 to n + 1. Thus the polynomial g,(x) —
pi(x) € P, has a zero in each interval (x;, x;.4),j = 0,..., n, for a total of
n + 1 zeros, which implies g, = pr . This contradicts (1.2.6), hence implies
that p} is a best approximation and concludes the easier half of our proof.

(if) Suppose that p¥ is a best approximation to fand f¢ P,. (If f€ P,, the
whole question is trivial.) Let a largest alternating set for / — p} consist of
the k + 1 points x,, ..., X, satisfyinga < xg < x; < +++ < X7 < x: < b.
In view of Theorem 1.6, kK = 1. We wish to prove that Xk = n + 1. Suppose,
then, that &k < n, and let us put

f=pl=p (50).

Lett,,..., t,be points of [a, b]chosensothata =1, < t;, < --- <1, =b
and so that e(x) = f(x) — p¥(x) satisfies

le(§) — e(m)| < 4p (1.2.8)
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30 UNIFORM APPROXIMATION [Ch. 1

Integrating both sides of (1.2.14) yields

arc cos (e{Tx)) =(n+ 1) + c,

where x = cos #, xe{—1,x,),0 < #, < # < =. Thus we obtain

e(x) = pcos [(n + 18 + c].

Now e(—1) = —p since we are assuming that e(—1) = 0; thus,
cosf(n + I)m + ¢] = =1 and ¢ = mn, where m + n + 1 is odd. Hence,
e(x) = +pcos(n + 1)8, (1.2.15)

cos (n 4+ 1)@ is a polynomial of degreen + | in x = cos #; that is,
cos (n + 1)d e P, ., and its leading coefficient is 2™ (cf. Exercise 1.6). (1.2.15)
and (1.2.11) now imply that

e(x) =2 ""cos(n + 1)0. (1.2.16)

{It is clear that if e'(x) < O 1n [—1, x,], we choose the negative square root on
the right-hand side of (1.2.14), and the ensuing argument produces (1.2.16)

again.]

To
Ty
Ty
T
FiGure 1.2

The polynomial cos k8, where x = cos 6,0 € # < =, iscalled the Chebysher
polynomial of degree k and we write

Ti(x) = cos k@, X=0, Lidia (1.2.17)

T The notation follows another transliteration from the Russian of ** Chebyshev,” one
beginning with a T.
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34 UNIFORM APPROXIMATION [Ch. |

forany pe P,, p # px. Moreover, for any X, ., C [a, b],
E(f; Xpez) = min max |f(x) — p{x)|

FeFy XEXp 49

= mnax If[..\"]' :{Xn+:;x)| n EHU; [ﬂ: b]) = En(f; X:+2]'

ZEXn & 2
(1.3.1)
with equality possible in (1.3.1) only if p¥(X,.2) = px.

Proof. Let X[, .bean alternating set for / — pX, then, in view of Thcurems
1.11 and 1.12 {(with X, = X7.2), p= is the best approximation to fon X% 5,
and the first part of the theorem is established.

Suppose pI(X,.2) # pr; then, by uniqueness (Theorem 1.12),
E(f: Xas2) < max |[flx) — pi(x)| £ E(f; [a, b]).

xeX n+1d

Equality can hold in (1.3.1) if pZ(X,.2) = px, and X, ., is an alternating set
for f— p5. 1

We obtain, similarly, by replacing [a, &] by X .,

THEDF.EM 1.14, If px(X,) € P, is the best approximation to  on X,., there
exists X, = X, such that

Ef: Xn) = Ef; X3i2) = max |f(x) — pi(Xn;: X)|
x€X34 2 (1.3.2)
< max [f(x) = p(x)|

xelisa

for any pe P,, p # pa(X.). Moreover, for any X, ., S X,,

En(.r; Xn-r!) = En(f‘ X:+=} (1-33)
with equality possible only if pi(X..2) = pr(X,).

Theorems 1.13 and 1.14 enable us to reduce the search for a best approxi-
mation out of P, to a set of n + 2 points. In the case of Theorem 1.13, this is
not too helpful since there are infinitely many sets of #n -+ 2 points in [a, b].
But in the case of Theorem 1.14 we see that, if we denote by X, ,, i =
1,..., (,%2), the finite number of different subsets of # 4+ 2 points of X,, and
find

max  E(f; Xni) = ES; Xn.)s

imllusa)

*{Xn} - :(Xm 1‘)*

This procedure presupposes our ability to find E,(f; X,..) and p5(X,.2) for
any set of n + 2 distinct points, X, , 5. Our next task is to see how this can be

done.

then
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38 UNIFORM APPROXIMATION [Ch. 1

for some 5 € 1. But p'(¢) = 0 since p(x) has a relative extremum at £: hence

8%

2l = [p(O] < K+ 2" (1.3.18)

We need an upper bound for |p"(3)|. This is provided by the result of V.
Markov (1.2.22) with k = 2:

n*(n?

()| = 3_ 2. Lpi- (1.3.19)

Substituting (1.3.19) into (1.3.18) yields

O
Pl < K + 20w = Dipl = K + =lp|.
from which (1.3.16) follows. |

LEMMA 19. ForpeP,
w(p; I; 8) < én*| p|. (1.3.20)

Proof. 1If x', x" € I, then, by the mean-value theorem,
p(x") = p(x") = (x" = x")p'(n).
But, relying on Markov’s result (1.2.22),
|P'@)] < n*|p|

[p(x") — p(x")| = on?|p],
which implies (1.3.20). |}

and, hence,

THEOREM 1.16. If f(x) is continuous on I, then

Ef; 1) — o(f; 1; 35) — 8,17 [”f” rf’fﬁ f)] < E(f; X)) < EN(fi D),

(1.3.21)
provided that 8, satisfies (1.3.15).

Proof. Let p¥ be the best approximation to fon [ and g, the best approxi-
mation to fon X,,. Then

E(f; Xp) < max | f(x) = pa(x)] < max f(x) = px(0)| = E.(f; ), (1.3.22)

and the right-hand inequality in (1.3.21) is proved.
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42 UNIFORM APPROXIMATION [Ch. 1

If M, > p,, we repeat the exchange procedure to obtain a new reference {x_}
such that p, > p,. Ateach step we get a new reference, and since X, contains
only finitely many references, the process terminates in a finite number of
steps. Thus the exchange method 1s, in general, a more sensible strategy
than proceeding through all the references X, .. of X, in a random fashion
since the reference deviations increase monotonically.

The question of which reference to choose at the start arises. A practical
answer can be given by jumping ahead to our chapter on least-squares
approximation (Chapter 2). If g, is the best least-squares approximation of
degree at most # to f on X,,, that is,

> ) = g.0P < D [f(x) — p(0))?

xeXm xeXp

for any pe P,, p # g,, then as we shall see, there exist n + 2 points of X,
on which f — g, alternates in sign. These points are a good choice for a
starting reference. (It will also turn out that g, can always be found quite
easily, so we have not just exchanged one difficulty for another of equal
magnitude.) Let us examine the example we worked out on p. 36, that is,
approximation by quadratics to [x| on X;. The least-squares approximation
on X; turns out to be g, = %x* + =%, and |x]| — g, alternates in sign on
X5, and X; s, so that we are led at once to the optimal references. Suppose,
however, that we start with X;, = {—1, —4,0, 1} as a reference, 0. Then
Po=8x*—gx+3, M, =% and x; =% |x| —p, = =5 at x =0, § at
x = 4, and § at x = 1. We therefore exchange the point 1 of the reference for
the point 4, obtaining a new reference, namely X5 ,, which we know to be
optimal. The point is that we were not led to X ;. For this and other variants
of the exchange method, we refer the reader to the following literature: Rice
[1], Meinardus [1], Remez [1], Stiefel [1].

1.4.2 Linear Programming

Another approach to the problem of finding best approximations on X,
1s to express the problem as a linear programming problem. In addition to the
n + 1 unknown coefficients of pi(X,), we introduce a new variable, p, as
follows. The condition

max |f(x) = p(x)} =

can be written

—p<flx)— Daxisp, Jj=1,...,m.
i=0
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46 UNIFORM APPROXIMATION [Ch. 1

where 1 = a — (@® — 1)*2. Use this result together with Exercise 1.9 to find
the best approximation out of P, on [—1, 1] to g(x)/(x — a) foranyg e P,.,.

[Hint: (Rivlin [1]) With x = cos 6, it is possible to sum the series

i P'T(x) = i ' cos j# = Re i (r ey.

i=0 f=0

For the second part, find p € P, such that

qx) _ ¢

x—4a x-—a_p']

1.21 Show that

T¥(x) >0  for x=1, k=0,...,n
and
sgn Ty (x) = (—1)° for x< —1, k=0,...,n.

[Hint: Use Rolle’s Theorem.]

1.22 Determine the conditions under which there can be equality in
(1.2.19), (Theorem 1.10).

1.23 Verify that (1.3.10) is equivalent to

A =Z (= DAS),

where
”l‘”l(xijl .
A = - - ) i=1,...,n+ 2,
TR (1|’ (x)))
and hence
n+2
A >0 and Z A=l
i=1

1.24 Show that, in the notation of Exercise 1.23,

n+2

> (—DAgx) =0

f=1

for anyge P,.
1.25 (L. Smith) Given fe C[—1, 1], consider the problem of finding

p € P, with the property that
f(x) = p(x), -l<x<1,

and

max [f(x) —p(x)] =< max [f(x) = p(x)]

=l<x=<
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50 LEAST-SQUARES APPROXIMATION {Ch. 2

a system of (n + 1) linear equations for the (n + 1) unknown coefficients of
gx(x). If we write
ga(x) = & + Eix + - - + EX7,

the system (2.1.4) may be written

S agb,=b, i=0,...n, (2.1.5)
where =
s J' Y teiit g (2.1.6)
and -
b = J‘ll xfwlx) dx. (2.1.7)

In principle, then, we can determine &,, ..., &, from (2.1.5), (which are called
the “normal’ equations) and thereby obtain gF explicitly. However, when n
is at all large, say n > 7, there appear, in the simple case that w(x) = 1,
formidable numerical difficulties in solving the normal equations. (For a dis-
cussion of the reason for these difficulties, see Forsvthe [1].) It is possible to
avoid these computational difficulties and find g7 in an extremely simple
manner by observing that {1, x, x%, ..., x™} is not the only set of functions
that spans P, , the space of polynomials of degree at most n. That is to say, if
Pos Prs - - s P € P, are linearly independent, then every p € P, has a unique
expression of the form

P =Py + Py + -0+ appy,. (2.1.8)

We are going to determine a set {p,. p;, ..., pat Which will be erthogonal with
respect to the given weight function, w(x). That is, we seek pg, p1y .. .. Pa € Py
such that

1
f pLpW(x)dx =0, j#k, jk=0,...,n (219
-1

If, in addition to (2.1.9), we also have

J'I pPPw(x)dx =1, j=0,...,n, (2.1.10)
-1

then {po. P1...., P} is called a set of erthonormal polynomrals with respect
to wix). Before proceeding to construct such an orthonormal set, let us see
how it simplifies the least-squares approximation problem. Suppose
Pos ..., Pn € P, satisfy (2.1.9) and (2.1.10). Then po, p1. ..., p. are linearly
independent (cf. Exercise 2.1). Let

gn(X) = Agpo(X) + Api(x) + -+ + Apa(x). (2.1.11)
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54 LEAST-SQUARES APPROXIMATION [Ch. 2

Therefore, the Legendre polynomials satisfy the recurrence relationship

2
oo = (2 D) 2-emeb — (2 3 F) 2o B o

n+ 1 n+ 1 dn* - 1
2n + 1 n
= ST xPyx) — — 7 Paa()
or
(n + NP, (x) = Cn + DxP.x) — nP,_(x). (2.2.6)

The first few Legendre polynomials are thus seen to be

Px) =1, P(x)=x, Px)=3x2—4, Pyx)=4%x*-1x,
P(x) = 3&x% — 1857 + §.

They are depicted in Figure 2.1.

FIGURE 2.1
Next let us consider the Jacobi polynomials in thecase « = 8 = —4, so that
wix) = (1 — x%)~ 42, (2.2.7)

We saw [Exercise 1.16(c)] that the Chebyshev polynomials defined as
T‘!‘I(x} = cos nfl, =1, Ly [22'8)

where x = cos #, 0 < @ < =, are orthogonal with respect to the weight
function given in (2.2.7). Thus, in view of (2.2.1),

1-3-5---(2f = 1)
3771 T{x).

Pi-uz-ua o
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58 LEAST-SQUARES APPROXIMATION [Ch. 2

(see p. 17). Since g is an even function, b, =0,k =1,...,n, and
sx(8; 0) =5 + Z a, cos kb = —'! Z a,T(x). (24.2)
k=1

The definition of the g, [(1.1.17), p. 17] reveals that (2.4.2) is the least-
squares approximation of degree n with respect to (2.4.1).

Now, according to Lemma 1.4, if g(#) 1s any continuous function on
-~ € 8 < = of period 2=,

s(g; 0 =2 [ 206 + o8 d,

where

va($) = 5 1 Z cos k¢ .

k=1

The reader should have no difficulty in verifying that

sin{(2n + 1)/2}¢
2sin (/2)

va(@) = (¢ # 2mm).

Thus, ‘
w(g:6) = 5 [ g6 + o IEENI 4

- j (80 + 4) + (6 — ) LN 4

We have therefore established

LemMa 2.1, If g(8) is continuous on —= < 8 < =, has period 2=, and

g < M, -—-n<6<m,

then its Fourier partial sums satisfy

_max is.(g; )| < ML,, (24.3)
where
_1 Ism (n + »})q&l (2.4.4)

sin ($/2)

The numbers L, are known as Lebesgue's constants.

Remark. The (even) function

_ sin{n + 18
g(ﬂ) i SE]'I Siﬂ [EIZ) {2*4‘5)
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62 LEAST-SQUARES APPROXIMATION [Ch. 2

2.4 Prove that / — gF changes sign at n + | points of (=1, 1) if f¢ P,.
{See p. 42 for an application of this fact.)

[Hint: If f — g¥ changes sign at at most r < n points of (—1, 1), there exists
p € P, such that (f — g»)p = 0 throughout I. Show that this contradicts
(2.1.2) since (f — g¥)p e C(I) and w(x) > 0 except for a finite number of

points.]

2.5 Show that the least-squares approximation of degree n — 1 to
f(x) = x*isgy_, = x® — p,, where j, is the orthogonal polynomial of aegree
n determined by w{x) and (2.1.16).

2.6 Show that the orthogonal polynomial p, (and hence p,) has n distinct
simple zeros in (—1, 1).

[Hint: Use Exercises 2.4 and 2.5.]
2.7 With the notation of Exercise 2.2, show that

lim S,(f;w) = 0.

B—o

[Hint: S.(f;w) < |/ — prl3, where py is the best uniform approximation to
fon 1]

2.8 Show that another form of (2.1.18) is

— {ﬁkiﬁk] )
Bx = Gex il (2.4.11)

[Hint: Replace k by &k — 1 in (2.1.16), then multiply both sides by j.w and
integrate.]

2.9 Prove that the Jacobi polynomial P{*# is an odd function for odd j
and an even function for even j.

[Hint: Use mathematical induction, (2.1.16) and the fact that w(x) is an even
function in this case.]

2.10 Show that, if w(x) = 1, the orthogonal polynomials defined by
(2.1.16) satisfy

- - ot 2 llrg -
(Pnlpﬂ] T 2“ + IFR(I)! n= ﬂi 11' .o (2-4-12)

[Hint: Integration by parts yields

{ﬁn:ﬁn} e ﬁ(l) 5 5 ﬁgﬁ(_ 1} o zn(ﬁn:ﬁn)']
2.11 Show that

2

(PI!PI'I')= on +1 ’

n=0,12,....
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CHAPTER 3

LEAST-FIRST-POWER
APPROXIMATION

This chapter is devoted to the study of polynomials that minimize the
integral of the absolute deviation from a given function. After characterizing
best approximations and proving uniqueness, some special cases in which the
best approximation is easily attainable are discussed. There follows consider-
ation of approximation on a finite point set, and the chapter closes with a
brief examination of some computational aspects of the problem.

3.1 Approximation on an Interval

In view of Theorem 1.1, we know that, given f{x) continuouson J: [—1, 1],
there exists a polynomial ry € P, such that

If=rtli=| /&= rt@lde< If=pls  @GLD

for all pe P,. In contrast to the case of least-squares approximation, we
cannot conclude that ry¥ is unique from Theorem 1.3, and must therefore leave
aside, for the moment, the question of uniqueness. Any r; satisfying (3.1.1)
we call a least-first-power approximation to f out of P,.

As is our custom, we shall begin by characterizing r¥. To this end we need
some new notation. If g e C(7), let

Z(g) = {xeljg(x) = 0}; (3.1.2)

that is, Z(g) is the set of zeros of g. Clearly, Z(g) is a closed set. If x € Z(g) is
such that every open interval of the real line that contains x also contains
points that are not in Z(g), then x is a boundary point of Z(g).

DEerFINITION. We call the boundary points of Z(g) essential zeros of g, and
denote them by Z'(g).

66
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70 LEAST-FIRST-POWER APPROXIMATION iCh. 3

(3.1.9) and (3.1.10) imply that

0= J._ll {If(x) — polx)| — %If(x) ~ pi(x)| — %If(x) ~ pz(x}l}dx-

(3.1.11)
Since
() = po®)| = | fx) — 22 + pa(x)
= % ILﬂx] — pi(x)] + Uf(x) — Pi(x)]l
1

=

31/ = P + 3 1/6) = P,

we learn that the integrand in (3.1.11) is nonpositive. It is also continuous and
therefore must be identically zero. This means that, if £ — p, has & distinct
zeros in I. k < n. For suppose that £k > », and let the zeros of / — p, be
Xy,...4X. Then, fori=1,..., k,

0 = [f(x) — po(x)| — 3 /(x) — pax)| — 3 (xi) = palx)|
= —3[f(x) — pa(x)| — 3 S(x) — paAx))],

from which we conclude that

S(x)) = pu(x) = f(xi) — pax) = 0.

Therefore, p;, — po € P, has k > n zeros, and so p, = p,, which is contrary
to our assumption.

Corollary 3.1.1 is now applicable with r¥ = p, and tells us that
1
|, 50 V@) = polx))-p(x) dx = 0 (3.1.12)

for all peP,. Let t; < 1, < --- < t, be those zeros of f — p, located in
(=1, 1) at which f — p, changes sign. Then, certainly, s < k < n, and if we
put 1, = —1 and 7,., = 1, (3.1.12) may be rewritten (possibly after being
multiplied by —1) as

i (—U“"f’“p{x) dx = 0. (3.1.13)
i=o 1

If we put p(x) = (x — t,)---(x — t,), then pe P, and
sgn-'::l*lp(x)dx‘_‘(_l}."’: j=0:---:3:

contradicting (3.1.13). The assumption that p, # p, has led to a contra-
diction. |}
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§ 3.3] Some Computational Aspects 85

Now let r be the smallest integer such that

r i
zzhﬂaggm:

i=1

then
1)

Xy

is a least-first-power approximation of the required form. Discuss uniqueness.

[Hint: While Theorem 3.5 cannot be applied, since we are not admitting all
polynomials of degree 1 as approximators, show that an exact analogue of
Theorem 3.5 holds when the family of approximators consists of {ax}. Then
apply this result. What is the result when the w, are arbitrary positive num-
bers?]

This problem has an interesting history. The result is the algebraic formula-
tion by Laplace of a geometric method due to Boscovich. A fascinating
account of Boscovich’s approach and its subsequent ramifications as well as
the history of the relative merits of least-first-power and least-squares fitting
of data can be found in Eisenhart [1].

3.11 Given X,, show that the least-first-power approximation by poly-
nomials of degree at most 1, with w, = wy, = w3 = 1, to fon Xj; is provided
by the line passing through (x,, f(x,;)) and (x3, f(xs3)).

Suppose m =n + 2,4,,...,q, to be the extreme points of B and f¢ P, in
Exercises 3.12 through 3.15.

3.12 Show that there i1s exactly one point, call it x;e X,,, at which
gi(x;) # f(x;), the points x,, .. ., x, are distinct, and each of q,, . . ., g, agrees
with fon x;.1,..., Xp42-

313 If

Po=Mg1 + -+ + Ads,

where A, > 0,/ =1,...,5,and A; + --- + A, = 1, show that p, agrees with
S precisely on x;.1,..., Xps2-

3.14 1If po € B agrees with f on n + 1 points, show that p, is an extreme
point of B,

Remark, The extreme points of B are now seen to be found among the

(at most) n + 2 polynomials that agree with f on some n + 1 points of X,,

and hence all of B can be determined by direct examination of (at most)
n + 2 polynomials.

3.15 Suppose that g€ B is an extreme point of B agreeing with f on

X1, .- .5 Xn41. Show that, for any g ¢ P,, the unique p, € P, that agrees with g
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§4.1] General Results 89

Proof. Let p* € P, be the best (uniform) approximation to f on I. Then
1f(x) = L(x)| < |f(x) — p*(x)] + [p*(x) — Li(x)|. (4.1.6)
By the uniqueness of the Lagrange interpolating polynomial,

pr(x) = L(p*, X;x),
and hence

PHx) — L(f, X5 x) = Li(p*, X5 x) — L(f, X;x) = L(p* — 1, X; x).
(4.1.6) now yields

S(x) = L(x)| < E, + L(p* — £, X, x). (4.1.7)
But
E+1
ILdp®* = £, X;0)| < max [p*(x) - f(x)]- _max > [F()]. (4.18)
=-lgsxs] 22X im

The theorem now follows from (4.1.7) and (4.1.8). |}

The function
B+l

MX:x) =D P, k=01,..., (4.1.9)
=1
which appears in (4.1.5), 1s called the Lebesgue function of order k of X. Note
that it does not depend on f. The quantity

AX) = max A(X;x)
-1l=x=<1

is called the Lebesgue constant of order k£ of X. (4.1.5) may now be written
concisely as

Gk = E&(I + J"'i.k], k = ﬂ, I, s as @ {4.110)
But according to Jackson's Theorem (Theorem 1.4), E, < 6w(1/k) and, hence,
G. < 6(1 + A w(l/k). (4.1.11)

Thus, insofar as Theorem 4.1 is informative, it tells us that, given X and
fe C(I), the sequence of interpolating polynomials converges uniformly to f
on / if Ayw(l/k)—0 as k — o0, If we know more about /, say that it has a
certain number of derivatives, we can use the appropriate variant of Jackson's
Theorem (see the discussion following Theorem 1.4) to bound E, in (4.1.10)
and obtain results analogous to (4.1.11). We must still estimate the size of
A.(X) and study the implications of these estimates. This we do in the next
section.
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