The New Book of Prime Number Records

Springer Science+Business Media, LLC

Paulo Ribenboim

The **New** Book of Prime Number Records

Paulo Ribenboim Department of Mathematics and Statistics Queen's University Kingston, Ontario K7L 3N6 Canada

Mathematics Subject Classification (1991): 11A41, 11B39, 11A51

Library of Congress Cataloging-in-Publication Data
Ribenboim, Paulo.
The new book of prime number records/Paulo Ribenboim. — 3rd ed.
p. cm.
Rev. ed. of: The book of prime number records. 2nd ed. c1989.
Includes bibliographical references and index.
ISBN 978-1-4612-6892-5 ISBN 978-1-4612-0759-7 (eBook)
DOI 10.1007/978-1-4612-0759-7
1. Numbers, Prime. I. Ribenboim, Paulo. Book of prime number records. II. Title.
QA246.R47 1995
512'.72-dc20 95-5441

Printed on acid-free paper.

© 1988, 1989, 1996 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc in 1988, 1989, 1996

Softcover reprint of the hardcover 3rd edition 1988, 1989, 1996

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC,

except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production coordinated by Brian Howe and managed by Francine McNeill; manufacturing supervised by Joe Quatela.

Typeset by Asco Trade Typesetting Ltd, Hong Kong.

987654321

ISBN 978-1-4612-6892-5

Narrow road to a far province.

Bashō

My Numbers Are My Happiness:

- 1. Huguette
- 2. Serge
- 3. Eric
- 4. Suzanne
- 5. Kelly
- 6. Katy
- 7. Erica
- 8. Eric

Not forgetting

0. Paulo, who counts the empty set \emptyset and $\{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \dots$.

Preface

This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series.

In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the *Guinness Book of Records*, reminded me very gently that the most "innumerate" people of the world are of a certain trible in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes, Morris, I'm from Brazil, but my book will contain numbers different from 'one."

He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name) and consists of about 16 million decimal digits of the number π .

"I assure you, Morris, that in spite of the beauty of the apparent randomness of the decimal digits of π , I'll be sure that my text will include also some words."

And then I proceeded putting together the magic combination of words and numbers, which became *The Book of Prime Number Records*. If you have seen it, only extreme curiosity could impel you to have this one in your hands.

The New Book of Prime Number Records differs little from its predecessor in the general planning. But it contains new sections and updated records.

It has been comforting to learn about the countless computers (machines and men), grinding without stop, so that more lines with new large numbers could be added, bringing despair for the printers and proofreaders.

x Preface

To give the tone, I begin with a probable new record:

RECORD The fastest selling book on prime number records is.... You may start reading it!

Kingston, Ontario, Canada

PAULO RIBENBOIM

Contents

Preface	ix
Guiding the Reader	xv
Index of Notations	xvii
Introduction	1
CHAPTER 1	
How Many Prime Numbers Are There?	3
I. Euclid's Proof	3
II. Goldbach Did It Too!	4
III. Euler's Proof	6
IV. Thue's Proof	7
V. Three Forgotten Proofs	8
A. Perott's Proof	8
B. Auric's Proof	9
C. Métrod's Proof	9
VI. Washington's Proof	9
VII. Fürstenberg's Proof	10
VIII. Euclidean Sequences	11
IX. Generation of Infinite Sequences of Pairwise Relatively Prime Integers	17
CHAPTER 2	
How to Recognize Whether a Natural Number Is a Prime	19
I. The Sieve of Eratosthenes	20
II. Some Fundamental Theorems on Congruences	21
A. Fermat's Little Theorem and Primitive Roots Modulo a Prime	22
B. The Theorem of Wilson	25
C. The Properties of Giuga, Wolstenholme, and Mann and Shanks	28
D. The Power of a Prime Dividing a Factorial	30
E. The Chinese Remainder Theorem	33
F. Euler's Function	34
G. Sequences of Binomials	42
H. Quadratic Residues	46
III. Classical Primality Tests Based on Congruences	48
IV. Lucas Sequences	53
V. Primality Tests Based on Lucas Sequences	74
VI. Fermat Numbers	83

xii	Contents
X11	Contents

VII.	Mersenne Numbers	90
VIII.	Pseudoprimes	103
	A. Pseudoprimes in Base 2 (psp)	105
	B. Pseudoprimes in Base $a(psp(a))$	108
	C. Euler Pseudoprimes in Base a (epsp(a))	112
	D. Strong Pseudoprimes in Base $a(spsp(a))$	113
	E. Somer Pseudoprimes	117
IX.	Carmichael Numbers	118
Χ.	Lucas Pseudoprimes	126
	A. Fibonacci Pseudoprimes	127
	B. Lucas Pseudoprimes $(lpsp(P, Q))$	129
	C. Euler-Lucas Pseudoprimes ($elpsp(P, Q)$) and	
	Strong Lucas Pseudoprimes $(slpsp(P, Q))$	130
	D. Somer-Lucas Pseudoprimes	131
	E. Carmichael-Lucas Numbers	132
XI.	Primality Testing and Large Primes	135
	A. The Cost of Testing	136
	B. More Primality Tests	139
	C. Primality Certification	153
	D. Fast Generation of Large Primes	156
	E. Titanic Primes	157
	F. Curious Primes	159
XII.	Factorization and Public Key Cryptography	162
	A. Factorization of Large Composite Integers	163
	B. Public Key Cryptography	172
снаг	PTER 3	
	There Functions Defining Prime Numbers?	179
		1,5

I. Functions Satisfying Condition (a)	179
II. Functions Satisfying Condition (b)	186
III. Functions Satisfying Condition (c)	187
IV. Prime-Producing Polynomials	196
A. Surveying the Problems	196
B. Polynomials with Many Initial Prime Absolute Values	197
C. The Prime-Producing Polynomials Races	203
D. Primes of the Form $m^2 + 1$	206

CHAPTER 4

How Ar	e the Prime Numbers Distributed?	213
I. Th	e Growth of $\pi(x)$	214
А.	History Unfolding	215
В.	Sums Involving the Möbius Function	229
C.	Tables of Primes	233
D.	The Exact Value of $\pi(x)$ and Comparison with $x/(\log x)$, Li(x),	
	and $R(x)$	235
E.	The Nontrivial Zeros of $\zeta(s)$	239
F.	Zero-Free Regions for $\zeta(s)$ and the Error Term in the	
	Prime Number Theorem	243

G. The Growth of $\zeta(s)$	245
H. Some Properties of $\pi(x)$	247
II. The nth Prime and Gaps	248
A. The <i>n</i> th Prime	248
B. Gaps Between Primes	250
Interlude	258
III. Twin Primes	259
Addendum on k-Tuples of Primes	265
IV. Primes in Arithmetic Progression	265
A. There Are Infinitely Many!	265
B. The Smallest Prime in an Arithmetic Progression	277
C. Strings of Primes in Arithmetic Progression	284
V. Primes in Special Sequences	288
VI. Goldbach's Famous Conjecture	291
VII. The Waring-Goldbach Problem	299
A. Waring's Problem	300
B. The Waring-Goldbach Problem	310
VIII. The Distribution of Pseudoprimes, Carmichael Numbers,	
and Values of Euler's Function	311
A. Distribution of Pseudoprimes	311
B. Distribution of Carmichael Numbers	314
C. Distribution of Lucas Pseudoprimes	317
D. Distribution of Elliptic Pseudoprimes	318
E. Distribution of Values of Euler's Function	319

Contents xiii

CHAPTER 5

Which Special Kinds of Primes Have Been Considered?	323
I. Regular Primes	323
II. Sophie Germain Primes	329
III. Wieferich Primes	333
IV. Wilson Primes	346
V. Repunits and Similar Numbers	350
VI. Primes with Given Initial and Final Digits	355
VII. Numbers $k \times 2^n \pm 1$	355
VIII. Primes and Second-Order Linear Recurrence Sequences	361
IX. The NSW Primes	367

CHAPTER 6

Heuristic and Probabilistic Results about Prime Numbers	371
I. Prime Values of Linear Polynomials	372
II. Prime Values of Polynomials of Arbitrary Degree	386
III. Polynomials with Many Successive Composite Values	400
IV. Partitio Numerorum	403
V. Some Probabilistic Estimates	411
A. Distribution of Mersenne Primes	411
B. The log log Philosophy	413
VI. The Density of the Set of Regular Primes	414

xiv Contents

427
433
509
513
517
519
535

Guiding the Reader

If a notation, which is not self-explanatory, appears without explanation on, say, page xxx, look at the Index of Notations, which is organized by page number; the definition of the notation should appear before page xxx.

If you wish to see where and how often your name is quoted in this book, turn to the Index of Names, at the end of the book. Should I say that there is no direct relation between achievement and number of quotes earned?

If, finally, you do not want to read the book but you just want to have some information about Knödel numbers—which is perfectly legitimate, if not laudable—go quickly to the Subject Index. Do not look under the heading "Numbers," but rather "Knödel." For a subject like "Strong Lucas pseudoprimes," you have exactly three possibilities

Index of Notations

The following traditional notations are used in the text without explanation:

Notation	Explanation
m n	the integer <i>m</i> divides the integer <i>n</i>
m∤n	the integer <i>m</i> does not divide the integer <i>n</i>
p ^e n	p is a prime, $p^e n$ but $p^{e+1} n$
gcd(m, n)	greatest common divisor of the integers m, n
lcm(m, n)	least common multiple of the integers m, n
log x	natural logarithm of the real number $x > 0$
Z	ring of integers
Q	field of rational numbers
R	field of real numbers
\mathbb{C}	field of complex numbers

The following notations are listed in the order that they appear in the book:

Page	Notation	Explanation
3 4 12 24 29	p_n F_n $p^{\#}$ g_p $[x]$	the <i>n</i> th prime <i>n</i> th Fermat number, $F_n = 2^{2^n} + 1$ product of all primes $q, q \le p$ smallest primitive root modulo p the largest integer in x , that is, the only integer such that $[x] \le x < [x] + 1$

Page	Notation	Explanation
34	$\varphi(n)$	totient or Euler's function
35	$\lambda(n)$	Carmichael's function
37	$\omega(n)$	number of distinct prime factors of n
37	L(x)	number of composite n, such that
		$n \le x$ and $\varphi(n)$ divides $n-1$
38	$V_{\varphi}(m)$	$\#\{n\geq 1 \varphi(n)=m\}$
39	$V_{\varphi}(m)$	$=$ #{ $n \ge 1 \varphi(n) = m$ }, valence
		function of φ
42	$E_{\varphi}(k)$	$\#\{(n, m) n > m \ge 1, n - m = k,\$
		$\varphi(n) = \varphi(m) \}$
44	t_n^*	primitive part of $a^n - b^n$
44	k(m)	square-free kernel of m
45	P[m]	largest prime factor of m
45	S_{κ}	set of integers n with at most
		$\{\kappa \log \log n\}$ distinct prime factors
46	(a/p)	Legendre symbol
47	(a/b)	Jacobi symbol
55	$U_n = U_n(P, Q)$	<i>n</i> th term of the Lucas sequence with parameters (P, Q)
55	$V_n = V_n(P, Q)$	nth term of the companion Lucas
		sequence with parameters (P, Q)
60	$\rho_{u}(n) = \rho(n, U)$	smallest $r \ge 1$ such that $\rho(n)$ divides
		U _r
61	$\psi(p)$	p-(D/p)
62	$ \begin{pmatrix} \alpha, \beta \\ p \end{pmatrix} \\ \lambda_{\alpha, \beta} (\prod p^e) \\ \mathscr{P}(U) $	a symbol associated to the roots α , β
02	\ p /	of $X^2 - PX + Q$
63	$\lambda_{\alpha,\beta}(\prod p^e)$	$\operatorname{lcm}\{\psi_{\alpha,\beta}(p^e)\}$
66	$\mathscr{P}(U)$	set of primes <i>p</i> dividing some term
		U _n
66	$\mathscr{P}(V)$	set of primes p dividing some term V_n
69	U_n^*	primitive part of U_n
74	$U_n^n = U_n(\sqrt{R}, Q)$	<i>n</i> th term of the Lehmer sequence with parameters \sqrt{R} , Q
74	$V_n = V_n(\sqrt{R}, Q)$	<i>n</i> th term of the companion Lehmer
/ 1	$n = n(\sqrt{10}, 2)$	sequences with parameters \sqrt{R} , Q
75	$\psi_D\left(\prod_{i=1}^s p_i^{e_i}\right)$	$= \frac{1}{2^{s-1}} \prod_{i=1}^{s} p_i^{e_i - 1} \left(p_i - \left(\frac{D}{p_i} \right) \right)$
	$\sum_{i=1}^{n}$	2^{i} $i=1$ $(p_i/)$

Page	Notation	Explanation
90	M_{a}	Mersenne number, $M_q = 2^q - 1$
101	$\tau(N)$	number of divisors of N
101	$\hat{H(N)}$	harmonic mean of divisors of N
102	$V(\mathbf{x})$	$\#\{N \text{ perfect number} N \leq x\}$
103	s(N)	sum of aliquot parts of N
103	$\sigma(N)$	sum of divisors of N
105	psp	pseudoprime in base 2
108	psp(a)	pseudoprime in base a
110	$B_{psp}(n)$	number of bases $a, 1 < a \le n - 1$,
111	l(x)	gcd(a, n) = 1, such that n is $psp(a)e^{\log x \log \log \log x/\log \log x}$
112	epsp(a)	Euler pseudoprime in base a
112	$B_{epsp}(n)$	number of bases $a, 1 < a \le n - 1$,
110	2 epsp(1)	gcd(a, n) = 1, such that n is $epsp(a)$
113	spsp(a)	strong pseudoprime in base <i>a</i>
115	$B_{\rm spsp}(n)$	number of bases $a, 1 < a \le n - 1$,
	shah	gcd(a, n) = 1, such that n is $spsp(a)$
117	$R_{(a,b,k)}$	set of all composite integers $n > k$
	(<i>a</i> , <i>b</i> , <i>k</i>)	such that $a^{n-k} \equiv b^{n-k} \pmod{n}$
120	$M_3(m)$	(6m + 1)(12m + 1)(18m + 1)
120	$M_k(m)$	$(6m + 1)(12m + 1)\sum_{i=1}^{k-2} (9 \times 2^{i}m + 1)$
125	C_k	set of all composite integers $n > k$
		such that if $1 < a < n$, $gcd(a, n) =$
		1, then $a^{n-k} \equiv 1 \pmod{n}$ (the
		Knödel numbers when $k > 1$)
127	lpsp(P, Q)	Lucas pseudoprime with parameters (P, Q)
129	$B_{lpsp}(n, Q)$	number of integers $P, 1 \le P \le n$,
	Thab	such that there exists Q, with
		$P^2 - 4Q \equiv D \pmod{n}$ and <i>n</i> is a
		lpsp(P, Q)
130	elpsp(P, Q)	Euler–Lucas pseudoprime with
		parameters (P, Q)
130	slpsp(P, Q)	strong Lucas pseudoprime with
		parameters (P, Q)
142	$\pi(x)$	the number of primes $p, p \le x$
183	$\mu(n)$	Möbius function

Page	Notation	Explanation
197	$\pi_{f(X)}(x)$	$\#\{n 1 \le n \le x, f(n) \text{ is a prime}\}\$
203	v(f, N)	$\# \{x x = 0, 1,, N \text{ such that } f(x) \}$
		is equal to 1 or to a prime}
205	$P_0[m]$	smallest prime factor of $m > 1$
206	h(d)	class number of $Q(\sqrt{d})$
214	$f(x) \sim h(x)$	f, h are asymptotically equal
214	f(x) = g(x)	the difference $f(x) - g(x)$ is
	+ O(h(x))	ultimately bounded by a constant
		multiple of $h(x)$
215	f(x) = g(x)	the difference $f(x) - g(x)$ is negligible
	+ o(h(x))	in comparison to $h(x)$
216	$\zeta(s)$	Riemann's zeta function
218	B_k	Bernoulli number
218	$\tilde{S_k(n)}$	$=\sum_{i=1}^{n} j^k$
219	$B_k(X)$	Bernoulli polynomial
220	Li(x)	logarithmic integral
221	$\theta(\mathbf{x})$	= $\sum_{p \le x} \log p$, Tschebycheff
		function
222	$\operatorname{Re}(s)$	real part of s
222	$\Gamma(s)$	gamma function
224	$J(\mathbf{x})$	weighted prime-power counting
		function
224	R(x)	Riemann's function
226	$\Lambda(n)$	von Mangoldt's function
227	γ	Euler's constant
227	$\psi(x)$	summatory function of the
		von Mangoldt function
230	f * g	convolution of arithmetic functions
230	M(x)	Mertens's function
236	$\varphi(x, m)$	$= \#\{a 1 \le a \le x, a \text{ is not } a\}$
		multiple of 2, 3,, p_m }
240	N(T)	$= \# \{ \rho = \sigma + it 0 \le \sigma \le 1, \zeta(\rho) =$
		$0, 0 < t \le T\}$
240	ρ_n	<i>n</i> th zero of $\zeta(s)$ in the upper half of
		the critical strip
240	$N(\sigma, t)$	number of zeros $\rho = \beta + it$ of $\zeta(s)$,
		with $\sigma \leq \beta$ and $0 < t \leq T$

Page	Notation	Explanation
245	$\omega(\sigma)$	$= \inf\{\alpha > 0 \zeta(\sigma + it) = O(t^{\alpha})\}$
250	d_n	$= p_{n+1} - p_n$
250	g(p)	number of successive composite
		integers greater than p
255	$\log_2 x$	$\log \log x$
255	$\log_3 x$	$\log \log \log x$
255	$\log_4 x$	$\log \log \log \log x$
258	$\pi_{f(X)}(x)$	$\#\{n \ge 1 \mid f(n) \le x, f(n) \in P_k\}$
259	P_k	set of all k-almost-primes
259	$\pi_{f(X)}^{(k)}(x)$	$= \left\{ n \le x \left \left f(n) \right \in P_k \right\} \right\}$
259	$\pi_{f(X)}^{(k)*}(x)$	$= \{n \ge 1 f(n) \in P_k, f(n) \le x\}$
259	$\pi_{f(X)}^{(k)}(x)$	$= \# \{ n \ge 1 f(n) \le x \text{ and } \}$
	J(A)	$ f(n) \in P_k$
260	$\pi_2(x)$	$=$ #{p prime $p \le x$ and $p + 2$ is
		also a prime}
261	В	Brun's constant
262	C_2	$= \prod_{p>2} (1 - 1/(p - 1)^2)$, twin prime
		constant
264	$\pi_{2k}(x)$	$= \# \{ n \ge 1 p_n \le x \text{ and } $
		$p_{n+1} - p_n = 2k\}$
266	ζ_n	$=\cos 2\pi/n + i\sin 2\pi/n$
266	$\Phi_n(X)$	nth cyclotomic polynomial
271	$\mathscr{P}(f)$	set of all primes p dividing $f(n)$, for
		some integer n
273	χ	modular character
273	$L(s \chi)$	L-function associated to the
		character χ
274	$\pi_{d,a}(x)$	$= \# \{ p \text{ prime} p \le x, p \equiv a \pmod{d} \}$
277	p(d, a)	smallest prime in the arithmetic
		progression $\{a + kd k \ge 0\}$
277	p(d)	$= \max\{p(d, a) 1 \le a < d,$
		gcd(a, d) = 1
279	L	Linnik's constant
280	g(m)	Jacobsthal function
283	$P_k(d, a)$	smallest k-almost-prime in the
		arithmetic progression
		$\{a + nd n \ge 1\}$

Page	Notation	Explanation
285	$N_m(x)$	= #{arithmetic progressions of
		primes $p_1 < p_2 < \cdots < p_m \le x$
289	I(A, n)	$= \#\{i 1 \le i \le n, \alpha_i \in I\}$
289	$\pi_{\alpha}(x)$	$=$ #{p prime $p \le x$ and there exists
		$k \ge 1$ such that $p = [k\alpha]$
290	$\pi^{\alpha}(x)$	$=$ #{ $p \text{ prime} p \leq x \text{ and there exists}$
		$k \ge 1$ such that $p = [k^{\alpha}]$
293	d(A)	density of the sequence A
293	S, S_0	Schnirelman's constants
297	$r_2(2n)$	number of representations of $2n$ as
		sums of two primes
297	$r_3(n)$	number of representations of the odd
200	C(L)	number n as sums of three primes
298	G'(x)	$=$ # { $2n$ $2n \le x$, $2n$ is not a sum of
300	a(la)	two primes} smallest integer r such that every
300	g(k)	natural number is the sum of at
		most r kth powers
300	G(k)	smallest integer r such that every
500	O(k)	sufficiently large integer is the sum
		of at most r kth powers
309	V(k)	smallest integer r such that every
		sufficiently large integer is the sum
		of at most r kth powers of prime
		numbers
310	(psp) _n	nth pseudoprime
310	$P\pi(x)$	number of pseudoprimes to base 2,
		less than or equal to x
311	$P\pi_a(x)$	number of pseudoprimes to base a,
		less than or equal to x
311	$EP\pi(x)$	number of Euler pseudoprimes to
		base 2, less than or equal to x
311	$EP\pi_a(x)$	same, to base <i>a</i>
311	$SP\pi(x)$	number of strong pseudoprimes to base 2, less than or equal
		to base z , less than of equal to x
311	$SP\pi_a(x)$	same, to base a
511	$Si n_a(n)$	sume, to base a

Page	Notation	Explanation
313	psp(d, a)	smallest pseudoprime in the arith-
	r - r (,)	metic progression $\{a + kd k \ge 1\}$
		with $gcd(a, d) = 1$
314	CN(x)	$= \#\{n n \le x, n \text{ Carmichael}\}$
		number}
317	$L\pi(x)$	number of Lucas pseudoprimes
		[with parameters (P, Q)] $n \le x$
317	$SL\pi(x)$	number of strong Lucas pseudo-
		primes [with parameters (P, Q)]
		$n \leq x$
321	$V^{\#}_{\omega}(m)$	$= \#\{k 1 \le k \le m, \text{ there exists}\}$
		$n \ge 1$ with $\varphi(n) = k$
325	$\pi_{reg}(N) \ \pi_{ir}(x)$	number of regular primes $p \le x$
325		number of irregular primes $p \le x$
326	ii(<i>p</i>)	irregularity index of p
326	$\pi_{iis}(x)$	number of primes $p \le x$ such that
		ii(p) = s
327	$K_n \\ K_n^+$	$= \mathbb{Q}(\zeta_{p^{n+1}}) \\= \mathbb{Q}(\zeta_{p^{n+1}} + \zeta_{p^{n+1}}^{-1})$
327	K_n^+	$= \mathbb{Q}(\zeta_{p^{n+1}} + \zeta_{p^{n+1}}^{-1})$
327	h_n	class number of K_n
327	h_n^+	class number of K_n^+
331	$S_{d,a}(x)$	$= \# \{ p \text{ prime} p \le x, a + pd \text{ is a} \\ prime \} $
335	$q_p(a)$	$= (a^{p-1} - 1)/p$, Fermat quotient of p ,
555	$q_p(u)$	with base a
336	$\mathcal{W}^{(k)}$	$= \{p \text{ prime} l^{p-1} \equiv 1 \pmod{p^k} \}$
337	${\mathscr W}_{l}^{(k)}$ ${\mathscr N}_{L}$	$= \{p \text{ prime} \text{there exists } c, \text{ not a} \}$
		multiple of p, such that $pc = u \pm$
		v, where all prime factors of uv
		are at most L
338	$\mathcal{N}_{l}^{(k)}$	= { $p \text{ prime}$ there exists $s \ge 1$ such
	·	that p divides $l^s + 1$, but p^{k+1}
		does not divide $l^s + 1$ }
344	$\mathscr{P}(F)$	$= \{p \text{ prime} \text{there exists } n \text{ such that } p \}$
		divides F_n
344	$\mathscr{P}(M)$	$= \{p \text{ prime} \text{there exists a prime } q \}$
		such that p divides M_q

Page	Notation	Explanation
344	$\mathscr{P}^{(2)}(F)$	$= \{p \text{ prime} \text{there exists } n \text{ such that} \\ p^2 \text{ divides } F_n \}$
344	$\mathscr{P}^{(2)}(M)$	$= \{ p \text{ prime} \text{there exists a prime } q \\ \text{such that } p^2 \text{ divides } M_q \}$
350	Rn	$=(10^{n}-1)/9$, repunit
350	Pn	prime with <i>n</i> digits
356	N(x)	= number of odd integers $k, 1 \le k \le x$, such that there exists $n \ge 1$ for which $k \times 2^n + 1$ is a prime
360	C_n	$n \times 2^n + 1$, Cullen number
361	$C\pi(x)$	number of Cullen numbers $Cn \le x$ that are prime
365	$\mathscr{P}(T)$	set of primes p dividing some term of the sequence $T = (T_n)_{n \ge 0}$
367	S_{2m+1}	NSW-number
368	\mathbf{F}_{P}	field with P elements
368	$Sp(2n, \mathbf{F}_{P})$	symplectic group of dimension $2n$ over \mathbf{F}_{P}
383	$\operatorname{prim}_{g}(x)$	$= \# \{ p \text{ prime} p \le x, g \text{ is a primitive} \\ \text{root modulo } p \}$
384	A	$= \prod_{p \ge 2} (1 - 1/p(p-1)), \text{ Artin's}$ constant
396	$\rho(x)$	$\limsup_{y\to\infty} \left(\pi(y+x) - \pi(y)\right)$
400	p(f)	smallest integer $m \ge 1$ such that $ f(m) $ is a prime
403	<i>k</i> (<i>d</i> , <i>u</i>)	smallest integer $k \ge 1$ such that $X^{d} + k$ is irreducible, satisfies condition (*) and $p(X^{d} + k) > u$
405	$\pi^*_{X^2+1}(x)$	$= \# \{p \text{ prime} p \text{ is of the form } p = m^2 + 1, \text{ and } p \le x\}$
406	$\pi^*_{aX^2+bX+c}(x)$	$= \# \{ p \text{ prime} p \text{ is of the form } p = am^2 + bm + c, \text{ and } p \le x \}$
407	$\pi^*_{X^{3}+k}(x)$	$= \# \{ p \text{ prime} p \text{ is of the form } p = m^3 + k, \text{ and } p \le x \}$
408	$\pi^*_{X^3+Y^3+Z^3}(x)$	$= \#\{(k, l, m) 1 \le k, l, m, \text{ and } k^3 + l^3 + m^3 = p \le x, p \text{ prime}\}$
410	$Q_{f_1,\ldots,f_s}(N)$	$= \# \{ n 1 \le n \le N, f_1(n), \dots, f_s(n) $ are primes $\}$