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Preface 

This book is primarily based on the research done by the Numerical Analysis 

Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in 

several graduate courses by the author between 1977 and 1981. It is hoped that 

the text will be useful for graduate students and for scientists interested in 

studying a fundamental theoretical analysis of numerical methods along with its 

application to the most diverse classes of differential and integral equations. 

The text treats numerous methods for approximating solutions of three classes 

of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial 

value problems in partial differential equations, and integral equations of the 

second kind. The aim is to develop a unifying convergence theory, and thereby 

prove the convergence of, as well as provide error estimates for, the approximations 

generated by specific numerical methods. The schemes for numerically solving 

boundary-value problems are additionally divided into the two categories of finite

difference methods and of projection methods for approximating their variational 

formulations. 

In accordance with our aims, we present in Part I approximation methods to 

each of the aforementioned classes of problems, state results concerning the solva

bility of the underlying approximate equations, and, for nonlinear problems, con

sider iterative procedures for their solution. Then, in Part II, we develop our 

underlying convergence theory for sequences of equations based on the concept of 

"discrete convergence". In Part III and IV, we reconsider the problem areas men

tioned above and show, by means of our theory, the convergence of solutions ob

tained by specific methods when applied to a series of examples. 

The convergence theory of approximation methods that we present in the text is 

applicable to a series of classes of both linear and nonlinear problems and will in 

many cases enable us to obtain two-sided error estimates. The methods we con

sider, for example, encompass finite element methods as well as finite-difference 

approximations for both ordinary and partial differential equations. Similarly, 

projection methods and methods based on quadrature formulas for numerically treating 

v 
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integral equations of the second kind can be analyzed with the techniques presented 

here. Moreover, the general convergence results can still be applied to other prob

lems and other classes of approximation methods (to, say, initial value problems 

in ordinary differential equations, collocation methods for initial and boundary

value problems, etc.). The general convergence theory presented in the text was 

essentially developed by F. Stummel. Further developments and refinements were 

made by R. D. Grigorieff and his group (at the Technical University in Berlin) and 

by the author. At some places in the text, in particular in Part IV, unpublished 

results are contained in the presentation. It is appropriate, at this point, to 

mention the earlier contributions of Aubin (1967), Browder (1967), Cea (1964), 

Pereyra (1967), Petryshyn (1967b, 1968a), Stetter (1965a, 1965b, 1966), Vainikko 

(1967) in developing a convergence theory for approximation methods. 

By necessity, we must limit the scope of the material presented in this book. 

The convergence theory, on the one hand, is developed in a very general setting, 

but, on the other, is restricted to problems where the approximating equations are 

expressed in terms of equicontinuously equidifferentiable mappings. These, of 

course, include linear problems. In the concrete applications, we mostly study 

problems with one spatial dimension. In higher dimensional problems, however (e.g. 

Poisson's equation or the two-dimensional heat equation), we consider only examples 

having rectangular spatial domains. We would like to mention that the approximation 

theory of finite elements can be treated by the analysis we develop in this book; 

but, due to the basic orientation of our presentation, we shall study finite ele

ment methods only in the context of specific examples. Moreover, there are numer

ous variants of the schemes considered in the text which will not be discussed be

cause of lack of space. The concrete methods we consider serve to demonstrate the 

applicability of our general convergence theory as well as provide analytical 

techniques. 

This book may also serve as a reference for a series of well-known and other 

numerical schemes for the problem classes considered. For practical purposes, the 

numerical methods can be chosen - and used - according to their stability and con

vergence properties provided in the text. It should be noted, however, that one 

and the same method may be stable, inversely stable and convergent or may not be 

stable, etc. depending on the norms underlying the analysis. For example, inverse 

stability of the well-known Crank-Nicolson-Galerkin method approximating the heat 

equation is explored three-fold in the text with the result that this method is 

conditionally stable with respect to the maximum norm, unconditionally stable in 

the sense of the von Neumann stability criterion, and unconditionally stable rela

tive to suitable Sobolev norms which are even stronger than the maximum norms. 

Furthermore, there are schemes which produce converging approximations but only 
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for restricted classes of problems; this phenomenon is expressed by the concept of 

stable convergence. We like to emphasize again that any stability or convergence 

statement is only relative to the underlying norms. The interested, more practi

cally orientated reader is invited to study such phenomena by means of computational 

experiments which, for most of the examples considered in the book, can be performed 

on personal computers. 

We now want to give some technical hints which should be noted in order to make 

the reading of the text easier. The book consists of thirteen chapters and is or

ganized in four parts. Each chapter contains different sections and is preceeded by 

an introduction. The same notation will be used for labeling formulas and specify

ing conditions; we refer to, e.g., formula (60) in Chapter 4 simply by 4.(60). A 

different notation will be employed for denoting theorems, lemmas, important prop

erties, and propositions, e.g., Theorem 5.9, Lemma 6.3, Property 7.6, Proposition 

12.8, etc .• In the text and at the conclusion of each chapter, we cite references 

only by author and year of publication, and give additional works pertinent to the 

study but not specifically referred to in the text. The full reference complete 

with title of the cited work can be found in the bibliography following the final 

chapter. At a few places in the text, comments are made concerning extensions of 

the results we present but, in general, we do not give an extensive discussion of 

related literature. The reader who is not interested in all problem areas in the 

text should select the relevant chapters according to the following diagram: 

Problems Chap. in Part I Chap. 

Boundary-value problems 8 l Variational equations 2 9 

f 
Part III 

Integral equations 3 10 

Initial value problems 4 11-13 Part IV 

In order to appreciate the convergence analysis in Chapters 8 to 13, it is, how

ever, necessary to study - or, at least, to take notice of - the convergence theory 

developed in Part II (Chapters 5-7). We strongly recommend though that the reader 

has a basic knowledge of numerical analysis and functional analysis in order to 

gain the most benefit from this book. 

The author would like to acknowledge his deep indebtedness to Professor F. 

Stummel who stimulated his interest in and from whom he learned about numerical 

analysis, first as a student and later as a collaborator. For various improvements, 

such as shorter proofs and better exposition at various places, the author is es

pecially obliged to Professor R. D. Grigorieff who has been kind enough to read most 

of the manuscript. The author would like to express his appreciation to Professor 
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H. D. Victory, Jr., for his careful translation of - and, in some cases, suggestions 

for improving - the original German manuscript. For reading and discussing several 
chapters, the author is indebted to Professor K. H. MUller, Professor I. Sloan, and 

Privatdozent J. Lorenz, and to some of his students for reading parts of earlier 

versions of the manuscript. Special thanks are due to Mrs. H. Meaner for her prompt 

preparation of a preliminary version of this book, and to Mrs. Kate MacDougall for 

her careful typing of the final copy. 
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