AN INTRODUCTION TO MEASURE AND INTEGRATION

With 25 figures

INDER K. RANA

Narosa Publishing House

New Delhi Madras Mumbai Calcutta London

CONTENTS

	• .	•	•					
Ρ	refac	e	ix					
R	ecipe	e for One Semester Course						
aı	nd In	terdependence of The Chapters	xiv					
N	Notations							
P	rolog	ue: The Length Function	1					
	••• ,							
1	Rie	mann Integration	5					
	1.1	The Riemann integral: A review 5						
•	1.2	Characterization of Riemann integrable functions 18						
	1.3	Historical notes: Integral from antiquity to Riemann 29)					
	1.4	Drawbacks of the Riemann integral 35						
2	Recipes for Extending The Riemann Integral 43							
	2,1	A function theoretic view of the Riemann integral 43						
	2.2	Lebesgue's recipe 45						
	2.3	Riesz-Daniell recipe 47						
3	Extending The Length Function;							
	Gen	neral Extension Theory	49					
	3.1	First extension of the length function 49						
	3.2	Semi-algebra and algebra of sets 51						

- vi Contents
 - 3.3 Extending a set function from
 - a semi-algebra to the algebra generated by it 54
 - 3.4* Impossibility of extending
 - the length function to all subsets of IR 55
 - 3.5 Countably additive set functions on intervals 57
 - 3.6 Countably additive set functions on algebras 59
 - 3.7 Approximating the length of a set $A \subseteq \mathbb{R}$: The induced outer measure 65
 - 3.8 Choosing nice sets: Measurable sets 68
 - 3.9 The σ -algebras and extending a measure from an algebra to the σ -algebra generated by it 73
 - 3.10 Uniqueness of the extension 76
 - 3.11 Measure space, complete measure space and completion of a measure space 81

4 The Lebesgue Measure on IR and Its Properties

- 4.1 The unique extension of the length function: The Lebesgue measure 87
- 4.2 Relation of the Lebesgue measurable sets with topologically nice sets of IR 91
- 4.3 Properties of the Lebesgue measure with respect to the group structure on **R** 94
- 4.4 Uniqueness of the Lebesgue measure 97
- 4.5* Cardinalities of the σ -algebras \mathcal{L} and $\mathcal{B}_{\mathbb{R}}$ 102
- 4.6 Nonmeasurable subsets of IR 104
- 4.7 The Lebesgue-Steiltjes measure 106

5 Integration

- 5.1 The integral of nonnegative simple functions 1085.2 Extending the integral
 - beyond nonnegative simple functions 112
- 5.3 Intrinsic characterization of the class L⁺: Nonnegative measurable functions 118

87

107

Contents vii

	5.4	Integrable functions 128				
	5.5	The Lebesgue integral				
		and its relation with the Riemann integral 136				
•	5.6	$L_1[a,b]$ as completion of $\mathcal{R}[a,b]$ 139				
	5.7	Another dense subspace of $L_1[a, b]$ 144				
	5.8	Improper Riemann integral				
		and its relation with the Lebesgue integral 149				
	5.9	Calculation of some improper Riemann integrals 153				
6	Fune	lamental Theorem of The Integral Calculus				
	for Lebesgue Integrals 155					
_	6.1	Absolutely continuous functions 155				
	6.2	Differentiability of monotone functions 159				
	6.3	Fundamental theorem of calculus				
		and its applications 170				
7	Mea	sure and Integration on Product Spaces 187				
	7.1	Introduction 187				
	7.2	Product of two measure spaces 188				
	7.3	Integration on product spaces: Fubini's theorems 197				
	7.4	The Lebesgue measure on \mathbb{R}^2 and its properties 205				
	7.5	Product of finitely many measure spaces 213				
8	Mod	les of Convergence and L _P -Spaces 217				
•	8.1	Integration of complex-valued functions 217				
	8.2	Convergence: pointwise, almost everywhere,				
		uniform and almost uniform 222				
	8.3	Convergence in measure 228				
	8.4	L_p -Spaces and convergence in the p^{th} -mean 234				
	8.5	Necessary and sufficient conditions for convergence in L_p 242				
	8.6	Dense subspaces of L_p 250				
	8.7	Regularization of functions 252				

8.8	$L_{\infty}(X, \mathcal{S}, \mu)$): The space	e of essenti	ally bounded function	ns 262
8.9	$L_2(X, \mathcal{S}, \mu)$: The space	of square	integrable functions	266
0 1 0	7 0			ORF	

8.10 L_2 -Convergence of Fourier series 275

The Radon-Nikodym Theorem and Its Applications 9 $\mathbf{280}$ Absolutely continuous measures 9.1 and the Radon-Nikodym theorem 280 9.2 Computation of the Radon-Nikodym derivative 290 Change of variable formulas 300 9.3 10 Signed Measures and Complex Measures 313 10.1 Signed measures 313 10.2 Radon-Nikodym theorem for signed measures 322 10.3 Complex measures 333 10.4 Bounded linear functionals on $L_{p}^{r}(X, \mathcal{B}, \mu)$ 342 Appendix 353 Appendix A.0 Singular value decomposition of a matrix 353 Functions of bounded variation 354 Appendix A.1 Appendix A.2 Differentiable transformations 357 References 365 Symbol Index 368 Subject Index 374