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Preface

Everything is more simple than one thinks
but at the same time more complex than one can understand

Johann Wolfgang von Goethe

To reach the point that is unknown to you,
you must take the road that is unknown to you

St. John of the Cross

This is a book on the numerical approximation of partial differential equations
(PDEs). Its scope is to provide a thorough illustration of numerical methods
(especially those stemming from the variational formulation of PDEs), carry
out their stability and convergence analysis, derive error bounds, and discuss
the algorithmic aspects relative to their implementation.

A sound balancing of theoretical analysis, description of algorithms and
discussion of applications is our primary concern.

Many kinds of problems are addressed: linear and nonlinear, steady
and time-dependent, having either smooth or non-smooth solutions. Besides
model equations, we consider a number of (initial-) boundary value problems
of interest in several fields of applications.

Part I is devoted to the description and analysis of general numerical
methods for the discretization of partial differential equations.

A comprehensive theory of Galerkin methods and its variants (Petrov
Galerkin and generalized Galerkin), as well as of collocation methods, is devel
oped for the spatial discretization. This theory is then specified to two numer
ical subspace realizations of remarkable interest: the finite element method
(conforming, non-conforming, mixed, hybrid) and the spectral method (Leg
endre and Chebyshev expansion).

For unsteady problems we will illustrate finite difference and fractional
step schemes for marching in time. Finite differences will also be extensively
considered in Parts II and III in the framework of convection-diffusion prob
lems and hyperbolic equations. For the latter we will also address, briefly, the
schemes based on finite volumes.

For the solution of algebraic systems, which are typically very large and
sparse, we revise classical and modern techniques, either direct and iterative
with preconditioning, for both symmetric and non-symmetric matrices. A
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short account will be given also to multi-grid and domain decomposition
methods.

Parts II and III are respectively devoted to steady and unsteady prob
lems. For each (initial-) boundary value problem we consider, we illustrate
the main theoretical results about well-posedness, i.e., concerning existence,
uniqueness and a-priori estimates. Afterwards, we reconsider and analyze the
previously mentioned numerical methods for the problem at hand, we derive
the corresponding algebraic formulation, and we comment on the solution
algorithms.

To begin with, we consider all classical equations of mathematical physics:
elliptic equations for potential problems, parabolic equations for heat diffu
sion, hyperbolic equations for wave propagation phenomena. Furthermore, we
discuss extensively advection-diffusion equations for passive scalars and the
Navier-Stokes equations (together with their linearized version, the Stokes
problem) for viscous incompressible flows. We also derive the equations of
fluid dynamics in their general form.

Unfortunately, the limitation of space and our own experience have re
sulted in the omission of many important topics that we would have liked to
include (for example, the Saint- Venant model for shallow water equations,
the system of linear elasticity and the biharmonic equation for membrane
displacement and thin plate bending, the drift-diffusion and hydrodynamic
models for semiconductor devices, the Navier-Stokes and Euler equations for
compressible flows).

This book is addressed to graduate students as well as to researchers and
specialists in the field of numerical simulation of partial differential equations.

As a graduate text for Ph.D. courses it may be used in its entirety. Part
I may be regarded as a one quarter introductory course on variational nu
merical methods for PDEs. Part II and III deal with its application to the
numerical approximation of time-independent and time-dependent problems,
respectively, and could be taught through the two remaining quarters. How
ever, other solutions may work well. For instance, supplementing Part I with
Chapters 6, 11 and most part of 14 may be suitable for a one semester course.
The rest of the book could be covered in the second semester. Following a
different key, Part I plus Chapters 8, 9, 10, 12, 13 and 14 can be regarded
as an introduction to numerical fluid dynamics. Other combinations are also
envisageable.

The authors are grateful to Drs. C. Byrne and J. Heinze of Springer
Verlag for their encouragement throughout this project. The assistence of
the technical staff of Springer-Verlag has contributed to the final shaping of

. the manuscript.
This book benefits from our experience in teaching these subjects over the

past years in different academical institutions (the University of Minnesota
at Minneapolis, the Catholic University of Brescia and the Polythecnic of
Milan for the first author, the University of Trento for the second author),
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and from students' reactions. Help was given to us by several friends and
collaborators who read parts of the manuscript or provided figures or tables.
In this connection we are happy to thank V.1. Agoshkov, Yu.A. Kuznetsov, D.
Ambrosi, L. Bergamaschi, S. Delladio, M. Manzini, M. Paolini, F. Pasquarelli,
L. Stolcis, E. Zampieri, A. Zaretti and in particular C. Bernini, P. Gervasio
and F. Saleri.

We would also wish to thank Ms. R. Holliday for having edited the lan
guage of the entire manuscript. Finally, the expert and incredibly adept typ
ing of the lEX-files by Ms. C. Foglia has been invaluable.

Milan and Trento
May, 1994

Alfio Quarteroni
Alberto Valli

In the second printing of this book we have corrected several misprints,
and introduced some modifications to the original text.

More precisely, we have sligthly changed Sections 2.3.4, 3.4.1, 8.4 and
12.3, and we have added some further comments to Remark 8.2.1.

We have also completed the references of those papers appeared after
1994.

Milan and Trento
December, 1996

Alfio Quarteroni
Alberto Valli
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