Texts in Applied Mathematics 37

Editors J.E. Marsden L. Sirovich M. Golubitsky W. Jäger

> Advisors G. Iooss P. Holmes D. Barkley M. Dellnitz P. Newton

Springer Science+Business Media, LLC

Texts in Applied Mathematics

- 1. Sirovich: Introduction to Applied Mathematics.
- 2. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos.
- 3. Hale/Koçak: Dynamics and Bifurcations.
- 4. Chorin/Marsden: A Mathematical Introduction to Fluid Mechanics, 3rd ed.
- Hubbard/West: Differential Equations: A Dynamical Systems Approach: Ordinary Differential Equations.
- 6. *Sontag:* Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd ed.
- 7. Perko: Differential Equations and Dynamical Systems, 2nd ed.
- 8. Seaborn: Hypergeometric Functions and Their Applications.
- 9. Pipkin: A Course on Integral Equations.
- 10. Hoppensteadt/Peskin: Mathematics in Medicine and the Life Sciences.
- 11. Braun: Differential Equations and Their Applications, 4th ed.
- 12. Stoer/Bulirsch: Introduction to Numerical Analysis, 2nd ed.
- 13. Renardy/Rogers: A First Graduate Course in Partial Differential Equations.
- 14. *Banks:* Growth and Diffusion Phenomena: Mathematical Frameworks and Applications.
- 15. Brenner/Scott: The Mathematical Theory of Finite Element Methods.
- 16. Van de Velde: Concurrent Scientific Computing.
- 17. Marsden/Ratiu: Introduction to Mechanics and Symmetry, 2nd ed.
- 18. *Hubbard/West:* Differential Equations: A Dynamical Systems Approach: Higher-Dimensional Systems.
- 19. Kaplan/Glass: Understanding Nonlinear Dynamics.
- 20. Holmes: Introduction to Perturbation Methods.
- 21. Curtain/Zwart: An Introduction to Infinite-Dimensional Linear Systems Theory.
- 22. Thomas: Numerical Partial Differential Equations: Finite Difference Methods.
- 23. Taylor: Partial Differential Equations: Basic Theory.
- 24. Merkin: Introduction to the Theory of Stability of Motion.
- 25. Naber: Topology, Geometry, and Gauge Fields: Foundations.
- 26. *Polderman/Willems:* Introduction to Mathematical Systems Theory: A Behavioral Approach.
- 27. *Reddy:* Introductory Functional Analysis with Applications to Boundary-Value Problems and Finite Elements.
- 28. *Gustafson/Wilcox:* Analytical and Computational Methods of Advanced Engineering Mathematics.
- 29. *Tveito/Winther:* Introduction to Partial Differential Equations: A Computational Approach.
- 30. *Gasquet/Witomski:* Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets.
- 31. Brémaud: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues.
- 32. Durran: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics.

Alfio Quarteroni Riccardo Sacco Fausto Saleri

Numerical Mathematics

With 134 Illustrations

Alfio Quarteroni Department of Mathematics Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland alfio.quarteroni@epfl.ch	Riccardo Sacco Dipartimento di Matematica Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milan Italy ricsac@mate.polimi.it		Fausto Saleri Dipartimento di Matematica, "F. Enriques" Università degli Studi di Milano Via Saldini 50 20133 Milan Italy fausto.saleri@unimi.it
J.E. Marsden Control and Dynamical Syster California Institute of Techno Pasadena, CA 91125 USA		L. Sirovich Division of App Brown Universi Providence, RI USA	,
M. Golubitsky Department of Mathematics University of Houston Houston, TX 77204-3476 USA		W. Jäger Department of Universität He Im Neuenheim 69120 Heidelbe Germany	er Feld 294

Mathematics Subject Classification (1991): 15-01, 34-01, 35-01, 65-01

Library of Congress Cataloging-in-Publication Data
Quarteroni, Alfio.
Numerical mathematics/Alfio Quarteroni, Riccardo Sacco, Fausto Saleri.
p. cm. — (Texts in applied mathematics; 37)
Includes bibliographical references and index.
ISBN 978-1-4757-7394-1
ISBN 978-0-387-22750-4 (eBook)
DOI 10.1007/978-0-387-22750-4
I. Numerical analysis. I. Sacco, Riccardo. II. Saleri, Fausto. III. Title. IV. Series.
I. Title. II. Series.
QA297.Q83 2000
519.4—dc21
99-059414

Printed on acid-free paper.

© 2000 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 2000 Softcover reprint of the hardcover 1st edition 2000

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC.

except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or herafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Frank M^cGuckin; manufacturing supervised by Jeffrey Taub. Camera-ready copy prepared from the authors' LaTeX files using Springer's svsing.sty macro.

9 8 7 6 5 4 3 2 1

Series Preface

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: *Texts in Applied Mathematics (TAM)*.

The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs.

Preface

Numerical mathematics is the branch of mathematics that proposes, develops, analyzes and applies methods from scientific computing to several fields including analysis, linear algebra, geometry, approximation theory, functional equations, optimization and differential equations. Other disciplines such as physics, the natural and biological sciences, engineering, and economics and the financial sciences frequently give rise to problems that need scientific computing for their solutions.

As such, numerical mathematics is the crossroad of several disciplines of great relevance in modern applied sciences, and can become a crucial tool for their qualitative and quantitative analysis. This role is also emphasized by the continual development of computers and algorithms, which make it possible nowadays, using scientific computing, to tackle problems of such a large size that real-life phenomena can be simulated providing accurate responses at affordable computational cost.

The corresponding spread of numerical software represents an enrichment for the scientific community. However, the user has to make the correct choice of the method (or the algorithm) which best suits the problem at hand. As a matter of fact, no black-box methods or algorithms exist that can effectively and accurately solve all kinds of problems.

One of the purposes of this book is to provide the mathematical foundations of numerical methods, to analyze their basic theoretical properties (stability, accuracy, computational complexity), and demonstrate their performances on examples and counterexamples which outline their pros and cons. This is done using the MATLAB^{® 1} software environment. This choice satisfies the two fundamental needs of user-friendliness and wide-spread diffusion, making it available on virtually every computer.

Every chapter is supplied with examples, exercises and applications of the discussed theory to the solution of real-life problems. The reader is thus in the ideal condition for acquiring the theoretical knowledge that is required to make the right choice among the numerical methodologies and make use of the related computer programs.

This book is primarily addressed to undergraduate students, with particular focus on the degree courses in Engineering, Mathematics, Physics and Computer Science. The attention which is paid to the applications and the related development of software makes it valuable also for graduate students, researchers and users of scientific computing in the most widespread professional fields.

The content of the volume is organized into four parts and 13 chapters.

Part I comprises two chapters in which we review basic linear algebra and introduce the general concepts of consistency, stability and convergence of a numerical method as well as the basic elements of computer arithmetic.

Part II is on numerical linear algebra, and is devoted to the solution of linear systems (Chapters 3 and 4) and eigenvalues and eigenvectors computation (Chapter 5).

We continue with Part III where we face several issues about functions and their approximation. Specifically, we are interested in the solution of nonlinear equations (Chapter 6), solution of nonlinear systems and optimization problems (Chapter 7), polynomial approximation (Chapter 8) and numerical integration (Chapter 9).

Part IV, which is the more demanding as a mathematical background, is concerned with approximation, integration and transforms based on orthogonal polynomials (Chapter 10), solution of initial value problems (Chapter 11), boundary value problems (Chapter 12) and initial-boundary value problems for parabolic and hyperbolic equations (Chapter 13).

Part I provides the indispensable background. Each of the remaining Parts has a size and a content that make it well suited for a semester course.

A guideline index to the use of the numerous MATLAB Programs developed in the book is reported at the end of the volume. These programs are also available at the web site address:

http://www1.mate.polimi.it/~calnum/programs.html

For the reader's ease, any code is accompanied by a brief description of its input/output parameters.

We express our thanks to the staff at Springer-Verlag New York for their expert guidance and assistance with editorial aspects, as well as to Dr.

¹MATLAB is a registered trademark of The MathWorks, Inc.

Martin Peters from Springer-Verlag Heidelberg and Dr. Francesca Bonadei from Springer-Italia for their advice and friendly collaboration all along this project.

We gratefully thank Professors L. Gastaldi and A. Valli for their useful comments on Chapters 12 and 13.

We also wish to express our gratitude to our families for their forbearance and understanding, and dedicate this book to them.

Lausanne, Switzerland Milan, Italy Milan, Italy January 2000 Alfio Quarteroni Riccardo Sacco Fausto Saleri

Contents

Preface

PART I: Getting Started

1.	Four	ndations of Matrix Analysis	1
	1.1	Vector Spaces	1
	1.2	Matrices	3
	1.3	Operations with Matrices	5
		1.3.1 Inverse of a Matrix	6
		1.3.2 Matrices and Linear Mappings	7
		1.3.3 Operations with Block-Partitioned Matrices	7
	1.4	Trace and Determinant of a Matrix	8
	1.5	Rank and Kernel of a Matrix	9
	1.6	Special Matrices	10
		1.6.1 Block Diagonal Matrices	10
		1.6.2 Trapezoidal and Triangular Matrices	11
		1.6.3 Banded Matrices	11
	1.7	Eigenvalues and Eigenvectors	12
	1.8	Similarity Transformations	
	1.9	The Singular Value Decomposition (SVD)	16
	1.10	Scalar Product and Norms in Vector Spaces	17
	1.11	Matrix Norms	21

 \mathbf{v}

vii

		1.11.1 Relation Between Norms and the	
		Spectral Radius of a Matrix	25
		1.11.2 Sequences and Series of Matrices	26
	1.12	Positive Definite, Diagonally Dominant and M-Matrices .	27
	1.13	Exercises	30
2.	Prin	ciples of Numerical Mathematics	33
	2.1	Well-Posedness and Condition Number of a Problem	33
	2.2	Stability of Numerical Methods	37
		2.2.1 Relations Between Stability and Convergence	40
	2.3		41
	2.4	Sources of Error in Computational Models	43
	2.5	Machine Representation of Numbers	45
		2.5.1 The Positional System	45
			46
		2.5.3 Distribution of Floating-Point Numbers	49
		2.5.4 IEC/IEEE Arithmetic	49
		2.5.5 Rounding of a Real Number in Its	
		Machine Representation	50
			52
	2.6		54

PART II: Numerical Linear Algebra

3.	Dire	ct Met	thods for the Solution of Linear Systems	57
	3.1	$\mathbf{Stabili}$	ty Analysis of Linear Systems	58
		3.1.1	The Condition Number of a Matrix	58
		3.1.2	Forward a priori Analysis	60
		3.1.3	Backward a priori Analysis	63
		3.1.4	A posteriori Analysis	64
	3.2	Solutio	on of Triangular Systems	65
		3.2.1	Implementation of Substitution Methods	65
		3.2.2	Rounding Error Analysis	67
		3.2.3	Inverse of a Triangular Matrix	67
	3.3	The G	aussian Elimination Method (GEM) and	
			ctorization	68
		3.3.1	GEM as a Factorization Method	72
		3.3.2	The Effect of Rounding Errors	76
		3.3.3	Implementation of LU Factorization	77
		3.3.4	Compact Forms of Factorization	78
	3.4	Other	Types of Factorization	79
		3.4.1	LDM^T Factorization	79
		3.4.2	Symmetric and Positive Definite Matrices:	
			The Cholesky Factorization	80
		3.4.3	Rectangular Matrices: The QR Factorization	82
			- •	

	3.5	Pivoti	ng	85
	3.6	Comp	uting the Inverse of a Matrix	89
	3.7	Bande	d Systems	90
		3.7.1	Tridiagonal Matrices	91
		3.7.2	Implementation Issues	92
	3.8	Block	Systems	93
		3.8.1	Block LU Factorization	94
		3.8.2	Inverse of a Block-Partitioned Matrix	95
		3.8.3	Block Tridiagonal Systems	95
	3.9	Sparse	Matrices	97
		3.9.1	The Cuthill-McKee Algorithm	98
		3.9.2	Decomposition into Substructures	100
		3.9.3	Nested Dissection	103
	3.10	Accura	acy of the Solution Achieved Using GEM	103
	3.11	An Ap	proximate Computation of $K(A)$	106
	3.12	Improv	ving the Accuracy of GEM	109
		3.12.1	Scaling	110
		3.12.2	Iterative Refinement	111
	3.13	Undet	ermined Systems	112
	3.14	Applic	ations	115
		3.14.1		
		3.14.2	Regularization of a Triangular Grid	118
	3.15	Exerci	ses	121
4.	Itera	ative N	lethods for Solving Linear Systems	123
	4.1		e Convergence of Iterative Methods	123
	4.2	Linear	Iterative Methods	126
		4.2.1	Jacobi, Gauss-Seidel and Relaxation Methods	127
		4.2.2	Convergence Results for Jacobi and	
			Gauss-Seidel Methods	129
		4.2.3	Convergence Results for the Relaxation Method .	131
		4.2.4	A priori Forward Analysis	132
		4.2.5	Block Matrices	133
		4.2.6	Symmetric Form of the Gauss-Seidel and	
			SOR Methods	133
		4.2.7	Implementation Issues	135
	4.3	Statio	nary and Nonstationary Iterative Methods	136
		4.3.1	Convergence Analysis of the Richardson Method .	137
		4.3.2	Preconditioning Matrices	139
		4.3.3	The Gradient Method	146
		4.3.4	The Conjugate Gradient Method	150
		4.3.5	The Preconditioned Conjugate Gradient Method .	156
		4.3.6	The Alternating-Direction Method	158
	4.4	Metho	ds Based on Krylov Subspace Iterations	
		4.4.1	The Arnoldi Method for Linear Systems	162

		4.4.2	The GMRES Method	165
		4.4.3	The Lanczos Method for Symmetric Systems	167
	4.5	The La	nczos Method for Unsymmetric Systems	168
	4.6	Stoppin	ng Criteria	171
		4.6.1	A Stopping Test Based on the Increment	172
		4.6.2	A Stopping Test Based on the Residual	174
	4.7	Applica	ations	174
		4.7.1	Analysis of an Electric Network	174
		4.7.2	Finite Difference Analysis of Beam Bending	177
	4.8	Exercis	Ses	179
5.	App	roxima	tion of Eigenvalues and Eigenvectors	183
	5.1		trical Location of the Eigenvalues	
	5.2	Stabilit	ty and Conditioning Analysis	186
		5.2.1	A priori Estimates	
		5.2.2	A posteriori Estimates	
	5.3	The Po	ower Method	192
		5.3.1	Approximation of the Eigenvalue of	
			Largest Module	192
		5.3.2	Inverse Iteration	195
		5.3.3	Implementation Issues	196
	5.4	-	R Iteration	200
	5.5		asic QR Iteration	201
	5.6	•	R Method for Matrices in Hessenberg Form	203
		5.6.1	Householder and Givens Transformation Matrices	204
		5.6.2	Reducing a Matrix in Hessenberg Form	207
		5.6.3	QR Factorization of a Matrix in Hessenberg Form	209
		5.6.4	The Basic QR Iteration Starting from	
			Upper Hessenberg Form	
		5.6.5	Implementation of Transformation Matrices	
	5.7	•	R Iteration with Shifting Techniques	
		5.7.1	The QR Method with Single Shift	
		5.7.2	The QR Method with Double Shift	
	5.8	-	iting the Eigenvectors and the SVD of a Matrix	
		5.8.1	The Hessenberg Inverse Iteration	221
		5.8.2	Computing the Eigenvectors from the	
			Schur Form of a Matrix	
		5.8.3	Approximate Computation of the SVD of a Matrix	
	5.9		eneralized Eigenvalue Problem	224
		5.9.1	Computing the Generalized Real Schur Form	225
		5.9.2	Generalized Real Schur Form of	000
			Symmetric-Definite Pencils	226
	5.10		ds for Eigenvalues of Symmetric Matrices	227
		5.10.1	The Jacobi Method	227
		5.10.2	The Method of Sturm Sequences	230

5.11	The Lanczos Method	33
5.12	Applications	35
	5.12.1 Analysis of the Buckling of a Beam	36
	5.12.2 Free Dynamic Vibration of a Bridge	38
5.13	Exercises	40

PART III: Around Functions and Functionals

6.	Roo	tfindin	g for Nonlinear Equations	245	
	6.1	Condi	tioning of a Nonlinear Equation	246	
	6.2	A Geo	ometric Approach to Rootfinding	248	
		6.2.1	The Bisection Method	248	
		6.2.2	The Methods of Chord, Secant and Regula Falsi		
			and Newton's Method	251	
		6.2.3	The Dekker-Brent Method	256	
	6.3	Fixed-	Point Iterations for Nonlinear Equations	257	
		6.3.1	Convergence Results for		
			Some Fixed-Point Methods	260	
	6.4	Zeros	of Algebraic Equations	261	
		6.4.1	The Horner Method and Deflation	262	
		6.4.2	The Newton-Horner Method	263	
		6.4.3	The Muller Method	267	
	6.5	Stopp	ing Criteria	269	
	6.6		Processing Techniques for Iterative Methods	272	
		6.6.1	Aitken's Acceleration	272	
		6.6.2	Techniques for Multiple Roots	275	
	6.7				
		6.7.1	Analysis of the State Equation for a Real Gas	276	
		6.7.2	Analysis of a Nonlinear Electrical Circuit		
	6.8	Exerci	ises		
7.			Systems and Numerical Optimization	281	
	7.1		on of Systems of Nonlinear Equations		
		7.1.1	Newton's Method and Its Variants		
		7.1.2	Modified Newton's Methods	284	
		7.1.3	Quasi-Newton Methods	288	
		7.1.4	Secant-Like Methods	288	
		7.1.5	Fixed-Point Methods	290	
	7.2	Uncor	nstrained Optimization	294	
		7.2.1	Direct Search Methods	295	
		7.2.2	Descent Methods	300	
		7.2.3	Line Search Techniques		
		7.2.4	Descent Methods for Quadratic Functions	304	
		7.2.5	Newton-Like Methods for Function Minimization .	307	
		7.2.6	Quasi-Newton Methods	308	

		7.2.7	Secant-Like Methods	309
	7.3	Consti	rained Optimization	311
		7.3.1	Kuhn-Tucker Necessary Conditions for	
			Nonlinear Programming	313
		7.3.2	The Penalty Method	
		7.3.3	The Method of Lagrange Multipliers	317
	7.4	Applic	eations	319
		7.4.1	Solution of a Nonlinear System Arising from	
			Semiconductor Device Simulation	320
		7.4.2	Nonlinear Regularization of a Discretization Grid .	
	7.5	Exerci	ses	
8.	Polynomial Interpolation			327
0.	8.1		omial Interpolation	
	0.1	8.1.1	The Interpolation Error	329
		8.1.2	Drawbacks of Polynomial Interpolation on Equally	020
		0.1.2	Spaced Nodes and Runge's Counterexample	330
		8.1.3	Stability of Polynomial Interpolation	332
	8.2		on Form of the Interpolating Polynomial	333
	0.2	8.2.1	Some Properties of Newton Divided Differences	335
		8.2.2	The Interpolation Error Using Divided Differences	337
	8.3	- •		
	8.4		te-Birkoff Interpolation	$\frac{338}{341}$
	8.5	•		343
	0.0	8.5.1	Polynomial Interpolation	343
		8.5.2	Piecewise Polynomial Interpolation	344
	8.6		ximation by Splines	348
	0.0	8.6.1	Interpolatory Cubic Splines	349
		8.6.2	B-Splines	353
	8.7		s in Parametric Form	357
	0.1	8.7.1	Bézier Curves and Parametric B-Splines	359
	8.8		cations	362
	0.0	8.8.1	Finite Element Analysis of a Clamped Beam	
		8.8.2	Geometric Reconstruction Based on	000
		0.0.2	Computer Tomographies	366
	8.9	Everci		
9.			Integration	371
	9.1		ature Formulae	371
	9.2	-	olatory Quadratures	373
		9.2.1	The Midpoint or Rectangle Formula	373
		9.2.2	The Trapezoidal Formula	375
		9.2.3	The Cavalieri-Simpson Formula	377
	9.3		on-Cotes Formulae	378
	9.4	Comp	osite Newton-Cotes Formulae	383

9.5	Hermite Quadrature Formulae		
9.6	Richar	dson Extrapolation	
	9.6.1	Romberg Integration	
9.7	Autom	atic Integration	
	9.7.1	Non Adaptive Integration Algorithms	
	9.7.2	Adaptive Integration Algorithms	
9.8	Singula	ar Integrals	
	9.8.1	Integrals of Functions with Finite	
		Jump Discontinuities	
	9.8.2	Integrals of Infinite Functions	
	9.8.3	Integrals over Unbounded Intervals 401	
9.9	Multid	imensional Numerical Integration 402	
	9.9.1	The Method of Reduction Formula 403	
	9.9.2	Two-Dimensional Composite Quadratures 404	
	9.9.3	Monte Carlo Methods for	
		Numerical Integration	
9.10	Applic	ations \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 408	
	9.10.1	Computation of an Ellipsoid Surface 408	
	9.10.2	Computation of the Wind Action on a	
		Sailboat Mast	
9.11	Exercis	ses	

PART IV: Transforms, Differentiation and Problem Discretization

10. Orth	ogonal Polynomials in Approximation Theory	415
10.1	Approximation of Functions by Generalized Fourier Series	415
	10.1.1 The Chebyshev Polynomials	417
	10.1.2 The Legendre Polynomials	419
10.2	Gaussian Integration and Interpolation	419
10.3	Chebyshev Integration and Interpolation	424
10.4	Legendre Integration and Interpolation	426
10.5	Gaussian Integration over Unbounded Intervals	428
10.6	Programs for the Implementation of Gaussian Quadratures	429
10.7	10.7 Approximation of a Function in the Least-Squares Sense .	
	10.7.1 Discrete Least-Squares Approximation	431
10.8	5 11	433
10.9	Fourier Trigonometric Polynomials	435
	10.9.1 The Gibbs Phenomenon	439
	10.9.2 The Fast Fourier Transform	440
10.10	Approximation of Function Derivatives	442
	10.10.1 Classical Finite Difference Methods	442
	10.10.2 Compact Finite Differences	444
	10.10.3 Pseudo-Spectral Derivative	448
10.11	Transforms and Their Applications	450

xviii Contents

			The Fourier Transform	450
		10.11.2 (Physical) Linear Systems and Fourier Transform .	453
		10.11.3	The Laplace Transform	455
		10.11.4 7	The Z-Transform	457
	10.12		velet Transform	458
		10.12.1	The Continuous Wavelet Transform	458
		10.12.2 I	Discrete and Orthonormal Wavelets	461
	10.13	Applicat	ions \ldots	463
		10.13.1 N	Numerical Computation of Blackbody Radiation .	463
		10.13.2 N	Numerical Solution of Schrödinger Equation	464
	10.14	Exercises	5	467
11	Num	orical S	olution of Ordinary Differential Equations	469
	11.1		chy Problem	469
	11.2	One-Ster	Numerical Methods	403
	11.2	Analysis	of One-Step Methods	472
	11.0	11.3.1 7	The Zero-Stability	475
		11.3.2 C	Convergence Analysis	477
		11.3.3	The Absolute Stability	479
	11.4	Differenc	e Equations	482
	11.5		p Methods	487
			Adams Methods	490
			BDF Methods	492
	11.6		of Multistep Methods	492
			Consistency	493
		11.6.2	The Root Conditions	494
			Stability and Convergence Analysis for	
			Aultistep Methods	495
			Absolute Stability of Multistep Methods	499
	11.7		r-Corrector Methods	502
	11.8		utta Methods	508
			Derivation of an Explicit RK Method	511
			Stepsize Adaptivity for RK Methods	512
			mplicit RK Methods	514
			Regions of Absolute Stability for RK Methods	516
	11.9	Systems	of ODEs	517
	11.10	Stiff Pro	blems	519
	11.11	Applicati	ions	521
		11.11.1 A	Analysis of the Motion of a Frictionless Pendulum	522
			Compliance of Arterial Walls	523
	11.12		· · · · · · · · · · · · · · · · · · ·	527
19	Two	Point P	oundary Value Problems	531
14,	12.1		Problem	531
			fference Approximation	533
				000

		12.2.1 Stability Analysis by the Energy Method	534
		12.2.2 Convergence Analysis	538
		12.2.3 Finite Differences for Two-Point Boundary	
		Value Problems with Variable Coefficients	540
1	2.3	The Spectral Collocation Method	542
1	2.4	The Galerkin Method	544
		12.4.1 Integral Formulation of Boundary-Value Problems	544
		12.4.2 A Quick Introduction to Distributions	546
		12.4.3 Formulation and Properties of the	
		Galerkin Method	547
			548
		12.4.5 The Finite Element Method	550
		12.4.6 Implementation Issues	556
		12.4.7 Spectral Methods	559
1	2.5	Advection-Diffusion Equations	560
		12.5.1 Galerkin Finite Element Approximation	561
		12.5.2 The Relationship Between Finite Elements and	
		,	563
			567
1	2.6		572
1	2.7	- T T · · · · · · · · · · · · · · · · · · ·	575
		12.7.1 Lubrication of a Slider	575
		12.7.2 Vertical Distribution of Spore	
		Concentration over Wide Regions	576
1	2.8	Exercises	578
13. F	Para	bolic and Hyperbolic Initial Boundary	
7	/alu	e Problems	581
1	3.1	The Heat Equation	581
1	3.2	Finite Difference Approximation of the Heat Equation	584
1	3.3	Finite Element Approximation of the Heat Equation	586
		13.3.1 Stability Analysis of the θ -Method	588
1	3.4	Space-Time Finite Element Methods for the	
		Heat Equation	593
1	3.5	Hyperbolic Equations: A Scalar Transport Problem	597
1	3.6	Systems of Linear Hyperbolic Equations	599
		L	601
1	3.7	The Finite Difference Method for Hyperbolic Equations	602
		13.7.1 Discretization of the Scalar Equation	602
1	3.8		605
		v	605
			605
			606
			608
1	3.9	Dissipation and Dispersion	611

xx Contents

13.9.1 Equivalent Equations	614			
13.10 Finite Element Approximation of Hyperbolic Equations	618			
13.10.1 Space Discretization with Continuous and				
Discontinuous Finite Elements	618			
13.10.2 Time Discretization	620			
13.11 Applications	623			
13.11.1 Heat Conduction in a Bar	623			
13.11.2 A Hyperbolic Model for Blood Flow				
Interaction with Arterial Walls	623			
13.12 Exercises	625			
References				
Index of MATLAB Programs				
Index	647			