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Series Preface 

Mathematics is playing an ever more important role in the physical and biological 
sciences, provoking a blurring of boundaries between scientific disciplines and a 
resurgence of interest in the modern as weil as the classical techniques of applied 
mathematics. This renewal of interest, both in research and teaching, has led to 
the establishment of the series: Texts in Applied Mathematics (TAM). 

The development of new courses is a natural consequence of a high level of 
excitement on the research frontier as newer techniques, such as numerical and 
symbolic computer systems, dynamical systems, and chaos, mix with and rein
force the traditional methods of applied mathematics. Thus, the purpose of this 
textbook series is to meet the current and future needs of these advances and en
courage the teaching of new courses. 

TAM will publish textbooks suitable for use in advanced undergraduate and 
beginning graduate courses, and will complement the Applied Mathematical Sci
ences (AMS) series, which will focus on advanced textbooks and research level 
monographs. 



Preface 

Numerical mathcmatics is the branch of mathematics that proposes, de
velops, analyzes and applies methods from scientific computing to several 
fields including analysis, linear algcbra, geometry, approximation theory, 
functional equations, optimization and differential equations. Other disci
plines such as physics, the natural and biological sciences, cnginecring, and 
economics and the financial sciences frequently give rise to problems that 
need scientific computing for their solutions. 

As such, numerical mathematics is the crossroad of several disciplines of 
great relevance in modern applied sciences, and can become a crucial tool 
for their qualitative and quantitative analysis. This role is also emphasized 
by the continual development of Computers and algorithms, which make it 
possible nowadays, using scientific computing, to tackle problems of such 
a large size that real-life phenomcna can be simulated providing accurate 
responses at affordable computational cost. 

The corresponding spread of numerical software represents an enrichment 
for the scientific community. However, the user has to make the correct 
choice of the method (or the algorithm) which best suits the problern at 
hand. As a matter of fact, no black-box methods or algorithms exist that 
can effectively and accurately solve all kinds of problems. 

One of the purposes of this book is to provide the mathematical foun
dations of numerical methods, to analyze their basic theoretical proper
ties (stability, accuracy, computational complexity), and demonstrate their 
performances on examples and counterexamples which outline their pros 



viii Preface 

and cons. This is clone using the MATLAglil 1 software environment. This 
choice satisfies the two fundamental needs of user-fricndliness and wide
spread diffusion, making it available on virtually every computer. 

Every chapter is supplied with examples, exercises and applications of 
the discussed theory to the solution of real-life problcms. Tbc reader is 
thus in the ideal condition for acquiring the theoretical knowledge that is 
required to make the right choice among the numerical methodologies and 
make use of the relatcd computer programs. 

This book is primarily addressed to undergraduate students, with partic
ular focus on the degree courses in Engineering, Mathematics, Physics and 
Computer Science. The attcntion which is paid to the applications and thc 
relatcd development of software makes it valuable also for graduate stu
dents, researchers and users of scientific computing in the most widespread 
professional fields. 

The content of the volume is organized into four parts and 13 chapters. 
Part I comprises two chapters in which we review basic linear algcbra and 

introduce the general concepts of consistency, stability and convergence of 
a numerical method as well as the basic elements of computer arithmetic. 

Part II is on numerical linear algebra, and is devoted to the solution of 
linear systems (Chaptcrs 3 and 4) and eigcnvalues and cigenvectors com
putation (Chapter 5). 

We continue with Part III where we face scveral issues about functions 
and thcir approximation. Spccifically, wc are interested in the solution of 
nonlinear equations (Chapter 6), solution of nonlinear systems and opti
mization problems (Chapter 7), polynomial approximation (Chapter 8) and 
numerical integration (Chapter 9). 

Part IV, which is the more demanding as a mathematical background, is 
concerned with approximation, integration and transforms based on orthog
onal polynomials (Chapter 10), solution of initial value problems (Chap
ter 11), boundary value problems (Chaptcr 12) and initial-boundary value 
problems for parabolic and hyperbolic equations (Chapter 13). 

Part I provides the indispensable background. Each of thc remairring 
Parts has a sizc and a content that make it well suited for a semcster 
coursc. 

A guideline index to the use of thc numerous MATLAB Programs de
veloped in the book is reported at the end of the volume. These programs 
are also available at the web site address: 

http://www 1. mate. polimi. itFcalnum/programs. html 
For the reader's ease, any code is accompanied by a brief description of 

its inputjoutput parameters. 
We express our thanks to the staff at Springer-Verlag New York for their 

expert guidance and assistance with editorial aspects, as well as to Dr. 

1 MATLAB is a registered trademark of The Math Works, Inc. 
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Martin Petcrs from Springer-Verlag Heidelberg and Dr. Francesca Bonadei 
from Springcr-Italia for their advice and friendly collaboration all along 
this project. 

We gratefully thank Professors L. Gastaldi and A. Valli for their uscful 
comments on Chaptcrs 12 and 13. 

Wc also wish to express our gratitude to our families for their forbcarancc 
and understanding, and dedicate this book to thcm. 

Lausanne, Switzcrland 
Milan, Italy 
Milan, Italy 
January 2000 

Alfio Quarteroni 
Riccardo Sacco 

Fausto Salcri 
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