A	ngle				A	ngle			
De-	Ra-	-	Co-	Tan-	De-	Ra-		Co-	Tan-
gree	dian	Sine	sine	gent	gree	dian	Sine	sine	gent
0°	0.000	0.000	1.000	0.000					
l°	0.017	0.017	1.000	0.017	46°	0.803	0.719	0.695	1.036
2°	0.035	0.035	0.999	0.035	47°	0.820	0.731	0.682	1.072
3°	0.052	0.052	0.999	0.052	48°	0.838	0.743	0.669	1.111
4°	0.070	0.070	0.998	0.070	4 9°	0.855	0.755	0.656	1.150
5°	0.087	0.087	0.996	0.087	50°	0.873	0.766	0.643	1.192
6°	0.105	0.105	0.995	0.105	51°	0.890	0.777	0.629	1.235
7°	0.122	0.122	0.993	0.123	52°	0.908	0.788	0.616	1.280
8°	0.140	0.139	0.990	0.141	53°	0.925	0.799	0.602	1.327
9°	0.157	0.156	0.988	0.158	54°	0.942	0.800	0.588	1.376
10°	0.175	0.174	0.985	0.176	55°	0.960	0.819	0.574	1.428
11°	0.192	0.191	0.982	0.194	56°	0.977	0.829	0.559	1.483
12°	0.209	0.208	0.978	0.213	57°	0.995	0.839	0.545	1.540
13°	0.227	0.225	0.974	0.231	58°	1.012	0.848	0.530	1.600
14°	0.244	0.242	0.970	0.249	59°	1.030	0.857	0.515	1.664
15°	0.262	0.259	0.966	0.268	60°	1.047	0.866	0.500	1.732
16°	0.279	0.276	0.961	0.287	61°	1.065	0.875	0.485	1.804
17°	0.297	0.292	0.956	0.306	62°	1.082	0.883	0.469	1.881
18°	0.314	0.309	0.951	0.325	63°	1.100	0.891	0.454	1.963
19°	0.332	0.326	0.946	0.344	64°	1.117	0.899	0.438	2.050
20°	0.349	0.342	0.940	0.364	65°	1.134	0.906	0.423	2.145
21°	0.367	0.358	0.934	0.384	66°	1.152	0.914	0.407	2.246
22°	0.384	0.375	0.927	0.404	67°	1.169	0.921	0.391	2.356
23°	0.401	0.391	0.921	0.424	68°	1.187	0.927	0.375	2.475
24°	0.419	0.407	0.914	0.445	69°	1.204	0.934	0.358	2.605
25°	0.436	0.423	0.906	0.466	70°	1.222	0.940	0.342	2.748
26°	0.454	0.438	0.899	0.488	71°	1.239	0.946	0.326	2.904
27°	0.471	0.454	0.891	0.510	72°	1.257	0.951	0.309	3.078
28°	0.489	0.469	0.883	0.532	73°	1.274	0.956	0.292	3.271
29°	0.506	0.485	0.875	0.554	74°	1.292	0.961	0.276	3.487
30°	0.524	0.500	0.866	0.577	75°	1.309	0.966	0.259	3.732
31°	0.541	0.515	0.857	0.601	76°	1.326	0.970	0.212	4.011
32°	0.559	0.530	0.848	0.625	77°	1.344	0.974	0.225	4.332
33°	0.576	0.545	0.839	0.649	78°	1.361	0.978	0.208	4.705
34°	0.593	0.559	0.829	0.675	79°	1.379	0.982	0.191	5.145
35°	0.611	0.574	0.819	0.700	80°	1.396	0.985	0.174	5.671
36°	0.628	0.588	0.809	0.727	81°	1.414	0.988	0.456	6.314
37°	0.646	0.602	0.799	0.754	82°	1.431	0.990	0.139	7.115
38°	0.663	0.616	0.788	0.781	83°	1.449	0.993	0.122	8.144
39°	0.681	0.629	0.777	0.810	84°	1.466	0.995	0.105	9.514
40°	0.698	0.643	0.766	0.839	85°	1.484	0.996	0.087	11.43
41°	0.716	0.656	0.755	0.869	86°	1.501	0.998	0.070	14.30
42°	0.733	0.669	0.743	0.900	87°	1.518	0.999	0.052	19.08
43°	0.750	0.682	0.731	0.933	88°	1.536	0.999	0.035	28.64
44°	0.768	0.695	0.719	0.966	89°	1.553	1.000	0.017	57.29
45°	0.785	0.707	0.707	1.000	90°	1.571	1.000	0.000	

Table 1. Natural Trigonometric Functions

×	e ^x	e^{-x}		e ^x	e ^{-x}
x			x	e*	e ^
0.00	1.0000	1.0000	2.5	12.182	0.0821
0.05	1.0513	0.9512	2.6	13.464	0.0743
0.10	1.1052	0.9048	2.7	14.880	0.0672
0.15	1.1618	0.8607	2.8	16.445	0.0608
0.20	1.2214	0.8187	2.9	18.174	0.0550
0.25	1.2840	0.7788	3.0	20.086	0.0498
0.30	1.3499	0.7408	3.1	22.198	0.0450
0.35	1.4191	0.7047	3.2	24.533	0.0408
0.40	1.4918	0.6703	3.3	27.113	0.0369
0.45	1.5683	0.6376	3.4	29.964	0.0334
0.50	1.6487	0.6065	3.5	33.115	0.0302
0.55	1.7333	0.5769	3.6	36.598	0.0273
0.60	1.8221	0.5488	3.7	40.447	0.0247
0.65	1.9155	0.5220	3.8	44.701	0.0224
0.70	2.0138	0.4966	3.9	49.402	0.0202
0.75	2.1170	0.4724	4.0	54.598	0.0183
0.80	2.2255	0.4493	4.1	60.340	0.0166
0.85	2.3396	0.4274	4.2	66.686	0.0150
0.90	2.4596	0.4066	4.3	73.700	0.0136
0.95	2.5857	0.3867	4.4	81.451	0.0123
1.0	2.7183	0.3679	4.5	90.017	0.0111
1.1	3.0042	0.3329	4.6	99.484	0.0101
1.2	3.3201	0.3012	4.7	109.95	0.0091
1.3	3.6693	0.2725	4.8	121.51	0.0082
1.4	4.0552	0.2466	4.9	134.29	0.0074
1.5	4.4817	0.2231	5	148.41	0.0067
1.6	4.9530	0.2019	6	403.43	0.0025
1.7	5.4739	0.1827	7	1096.6	0.0009
1.8	6.0496	0.1653	8	2981.0	0.0003
1.9	6.6859	0.1496	9	8103.1	0.0001
2.0	7.3891	0.1353	10	22026	0.00005
2.1	8.1662	0.1225			
2.2	9.0250	0.1108			
2.3	9.9742	0.1003			
2.4	11.023	0.0907			

Table 2. Exponential Functions

Murray H. Protter Charles B. Morrey, Jr.

Intermediate Calculus

Second Edition

With 266 Illustrations

Undergraduate Texts in Mathematics

Anglin: Mathematics: A Concise History and Philosophy. Readings in Mathematics. Anglin/Lambek: The Heritage of Thales. Readings in Mathematics. Apostol: Introduction to Analytic Number Theory. Second edition. Armstrong: Basic Topology. Armstrong: Groups and Symmetry. Axler: Linear Algebra Done Right. Second edition. Beardon: Limits: A New Approach to Real Analysis. Bak/Newman: Complex Analysis. Second edition. Banchoff/Wermer: Linear Algebra Through Geometry. Second edition. Berberian: A First Course in Real Analysis. Bix: Conics and Cubics: A Concrete Introduction to Algebraic Curves. Brémaud: An Introduction to Probabilistic Modeling. Bressoud: Factorization and Primality Testing. Bressoud: Second Year Calculus. Readings in Mathematics. Brickman: Mathematical Introduction to Linear Programming and Game Theory. Browder: Mathematical Analysis: An Introduction. Buskes/van Rooij: Topological Spaces: From Distance to Neighborhood. Cederberg: A Course in Modern Geometries Childs: A Concrete Introduction to Higher Algebra. Second edition. Chung: Elementary Probability Theory with Stochastic Processes. Third edition. Cox/Little/O'Shea: Ideals, Varieties, and Algorithms. Second edition. Croom: Basic Concepts of Algebraic Topology. Curtis: Linear Algebra: An Introductory Approach. Fourth edition.

Devlin: The Joy of Sets: Fundamentals of Contemporary Set Theory. Second edition. Dixmier: General Topology. Driver: Why Math? **Ebbinghaus/Flum/Thomas:** Mathematical Logic. Second edition. Edgar: Measure, Topology, and Fractal Geometry. Elavdi: Introduction to Difference Equations. Exner: An Accompaniment to Higher Mathematics. Fine/Rosenberger: The Fundamental Theory of Algebra. Fischer: Intermediate Real Analysis. Flanigan/Kazdan: Calculus Two: Linear and Nonlinear Functions. Second edition. Fleming: Functions of Several Variables. Second edition. Foulds: Combinatorial Optimization for Undergraduates. Foulds: Optimization Techniques: An Introduction. Franklin: Methods of Mathematical Economics. Gordon: Discrete Probability. Hairer/Wanner: Analysis by Its History. Readings in Mathematics. Halmos: Finite-Dimensional Vector Spaces. Second edition. Halmos: Naive Set Theory. Hämmerlin/Hoffmann: Numerical Mathematics. Readings in Mathematics. Hijab: Introduction to Calculus and Classical Analysis. Hilton/Holton/Pedersen: Mathematical Reflections: In a Room with Many Mirrors. Iooss/Joseph: Elementary Stability and Bifurcation Theory. Second edition. Isaac: The Pleasures of Probability.

Readings in Mathematics.

(continued after index)

Murray H. Protter Charles B. Morrey, Jr.

Intermediate Calculus

Second Edition

With 266 Illustrations

Murray H. Protter Department of Mathematics University of California Berkeley, CA 94720 U.S.A. Charles B. Morrey, Jr. deceased

Editorial Board

S. Axler Mathematics Department San Francisco State University San Francisco, CA 94132 U.S.A. F.W. Gehring Mathematics Department East Hall University of Michigan Ann Arbor, MI 48109 U.S.A. K.A. Ribet Mathematics Department University of California at Berkeley Berkeley, CA 94720 U.S.A.

Mathematics Subject Classification (1991): 26-01, 42-01

Library of Congress Cataloging in Publication Data Protter, Murray H. Intermediate calculus. (Undergraduate texts in mathematics) Rev. ed. of: Calculus with analytic geometry. 1971. Includes index. 1. Calculus. 2. Geometry, Analytic. I. Morrey, Charles Bradfield. II. Protter, Murray H. Calculus with analytic geometry. III. Title. IV. Series. OA303.P974 1985 515'.15 84-14118

This is the second edition of *Calculus with Analytic Geometry: A Second Course*, the first edition of which was published by Addison-Wesley Publishing Company, Inc., © 1971.

©1985 Springer-Verlag Berlin Heidelberg Originally published by Springer-Verlag Berlin Heidelberg New York in 1985 Softcover reprint of the hardcover 2nd edition 1985

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

Typeset by Asco Trade Typesetting, Ltd., Hong Kong.

987654

ISBN 978-1-4612-7006-5 ISBN 978-1-4612-1086-3 (eBook) DOI 10.1007/978-1-4612-1086-3

Preface

Analytic geometry and calculus at a college or university almost always consists of a three-semester course. Typically, the first two semesters cover plane analytic geometry and the calculus of functions of one variable. The third semester usually deals with three-dimensional analytic geometry, partial differentiation, multiple integration, and a selection of other topics which depend on the book used. Some courses may even include a small amount of linear algebra. Most texts for such a three-semester sequence run to an unwieldy 1,000 pages or more.

We believe that an instructor can add a great deal of flexibility to the calculus program by separating the text materials used in the third semester from those used in the first year. Such a division makes for a greater choice in the selection of topics taken up in the third semester. Moreover, at many universities there is a fourth semester of analysis in the lower division program. In such a case it is desirable to have one book which carries through the entire year, as this text does.

In recent years the percentage of students who enter college after completing a year of calculus in high school has been increasing; by now, the number is substantial. These students, many of whom have taken the Advanced Placement program, have mastered the calculus of functions of one variable from a variety of texts and are ready to begin the third semester of calculus with analytic geometry with a text suited to their needs.

In the first five chapters in this book we present the material which is most frequently taught in the third semester of calculus. We suppose that the student has completed the usual two semesters of plane analytic geometry and one-variable calculus from any standard text. Chapters 6 through 10 provide additional material which can be used either to replace some of the traditional third-semester course or to fill out a fourth semester of analysis. The latter option would give students a thorough preparation for a junior-level course in real analysis.

One of the main features of our text is the flexibility which results from the relative independence of the chapters. For example, if an instructor wishes to teach Chapter 6 on Fourier series and if the students have already had the standard topics on infinite series which we present in Sections 1 through 10 of Chapter 3, then the instructor need only present the advanced material on uniform convergence of series in Sections 11, 12, and 13 as preparation for Fourier series. On the other hand, if the instructor chooses to skip Chapter 6, there is no inconvenience in presenting the remainder of the book.

We also wish to emphasize the flexibility of our treatment of both vector field theory and Green's and Stokes' theorems in Chapters 9 and 10. A minimum of preparation from Chapters 2, 4, and 5 is needed for this purpose. We first establish Green's theorem for simple domains, a result which is adequate for most applications. Here the presentation is quite elementary. Then we continue with a section on orientable surfaces, as well as proofs of Green's and Stokes' theorems, which use a partition of unity. The serious student will benefit greatly from these sections, since the methods we use are straightforward, detailed, and sufficiently general so that, for example, it can be shown that Cauchy's theorem for complex analytic functions in general domains is a corollary of Green's theorem.

Chapter 7, on the implicit function theorem and the inverse function theorem, provides an excellent preparation for those students who intend to go on in mathematics. However, it may be skipped with little or no inconvenience by those instructors who prefer to concentrate on the last two chapters of the text. Chapter 8, on differentiation under the integral sign and improper integrals, treats a useful topic, especially for those planning to work in applied mathematics or related fields of technology. It is worth noting that the material in Chapter 8 is seldom presented in texts at the lower division level. As with Chapter 7, the omission of this chapter will not affect the continuity of the remainder of the book.

Many students are not familiar with the simple properties of matrices and determinants. Also, they are usually not aware of Cramer's rule for solving m linear equation in n unknowns when m and n are different integers. In an appendix we provide an introduction to matrices and determinants sufficient to establish Cramer's rule. The instructor may wish to use this material as optional independent reading for those interested students who are unfamiliar with linear algebra. We include illustrative examples and exercises in this appendix so that a good student can easily learn the material without help.

Berkeley, California October 1984 MURRAY H. PROTTER

Contents

CHAPTER 1	
Analytic Geometry in Three Dimensions	1
1. The Number Space R^3 . Coordinates. The Distance Formula	1
2. Direction Cosines and Numbers	7
3. Equations of a Line	13
4. The Plane	17
5. Angles. Distance from a Point to a Plane	22
6. The Sphere. Cylinders	28
7. Other Coordinate Systems	32

CHAPTER 2

Vectors	36
1. Directed Line Segments and Vectors in the Plane	36
2. Operations with Vectors	39
3. Operations with Plane Vectors, Continued. The Scalar Product	45
4. Vectors in Three Dimensions	52
5. Linear Dependence and Independence	58
6. The Scalar (Inner or Dot) Product	62
7. The Vector or Cross Product	66
8. Products of Three Vectors	73
9. Vector Functions and Their Derivatives	77
10. Vector Velocity and Acceleration in the Plane	82
11. Vector Functions in Space. Space Curves. Tangents and Arc Length	85
CHAPTER 3	
Infinite Series	91
1. Indeterminate Forms	91
2. Convergent and Divergent Series	98

Contents

3.	Series of Positive Terms	104
4.	Series of Positive and Negative Terms	113
5.	Power Series	120
6.	Taylor's Series	126
7.	Taylor's Theorem with Remainder	131
8.	Differentiation and Integration of Series	138
9.	Validity of Taylor Expansions and Computations with Series	146
10.	Algebraic Operations with Series	151
11.	Uniform Convergence. Sequences of Functions	154
12.	Uniform Convergence of Series	164
13.	Integration and Differentiation of Power Series	169
14.	Double Sequences and Series	174
15.	Complex Functions. Complex Series	187

CHAPTER 4

Par	rtial Derivatives. Applications	197
1.	Limits and Continuity. Partial Derivatives	197
2.	Implicit Differentiation	203
3.	The Chain Rule	206
4.	Applications of the Chain Rule	213
5.	Directional Derivatives. Gradient	217
6.	Geometric Interpretation of Partial Derivatives. Tangent Planes	224
7.	The Total Differential. Approximation	231
8.	Applications of the Total Differential	237
9.	Second and Higher Derivatives	243
10.	Taylor's Theorem with Remainder	250
11.	Maxima and Minima	256
12.	Maxima and Minima by the Method of Lagrange Multipliers	266
13.	Exact Differentials	274
14.	Definition of a Line Integral	282
15.	Calculation of Line Integrals	285
16.	Path-Independent Line Integrals	291

CHAPTER 5

Multiple Integration	295
1. Definition of the Double Integral	295
2. Properties of the Double Integral	301
3. Evaluation of Double Integrals. Iterated Integrals	303
4. Area, Density, and Mass	315
5. Evaluation of Double Integrals by Polar Coordinat	tes 318
6. Moment of Inertia and Center of Mass	325
7. Surface Area	333
8. The Triple Integral	340
9. Mass of a Region in R^2 . Triple Integrals in Cylindri	ical and
Spherical Coordinates	347
10. Moment of Inertia. Center of Mass	353

viii

Contents

CHAPTER 6

Fourier Series	358
1. Fourier Series	358
2. Half-Range Expansions	368
3. Expansions on Other Intervals	371
4. Convergence Theorem. Differentiation and Integration of Fourier	
Series	375
5. The Complex Form of Fourier Series	385

CHAPTER 7

Implicit Function Theorems. Jacobians	390
1. Implicit Function Theorems	390
2. Implicit Function Theorems for Systems	403
3. Transformations and Jacobians	412

CHAPTER 8

Differentiation under the Integral Sign. Improper Integrals.	
The Gamma Function	421
1. Differentiation under the Integral Sign	421
2. Tests for Convergence of Improper Integrals. The Gamma Function	428
3. Improper Multiple Integrals	436
4. Functions Defined by Improper Integrals	445

CHAPTER 9

Vector Field Theory	
1. Vector Functions	454
2. Vector and Scalar Fields. Directional Derivative and Gradient	460
3. The Divergence of a Vector Field	466
4. The Curl of a Vector Field	474
5. Line Integrals; Vector Formulation	480
6. Path-Independent Line Integrals	486

CHAPTER 10

Green's and Stokes' Theorems	496
1. Green's Theorem	496
2. Proof of Green's Theorem	504
3. Change of Variables in a Multiple Integral	510
4. Surface Elements. Surfaces. Parametric Representation	518
5. Area of a Surface. Surface Integrals	523
6. Orientable Surfaces	533
7. Stokes' Theorem	537
8. The Divergence Theorem	547

Contents

APPENDIX 1	
Matrices and Determinants	APP-1
1. Matrices	APP-1
2. Matrices, Continued. Double Sums and Double Sequences	APP-7
3. Determinants	APP-14
4. Properties of Determinants	APP-18
5. Cramer's Rule	APP-25
6. The Rank of a Matrix. Elementary Transformations	APP-28
7. General Linear Systems	APP-36
APPENDIX 2 Proofs of Theorems 6, 10, 16, and 17 of Chapter 2 APPENDIX 3	APP-42
Introduction to the Use of a Table of Integrals	APP-47
A Short Table of Integrals	APP-53
Answers to Odd-Numbered Problems	ANS-1
Index	INDEX-1