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Preface 

In the axioms of probability theory proposed by Kolmogorov the basic 
"probabilistic" object is the concept of a probability model or probability 
space. This is a triple (n, F, P), where n is the space of elementary events 
or outcomes, F is a a-algebra of subsets of n announced by the events and 
P is a probability measure or a probability on the measure space (n, F). 
This generally accepted system of axioms of probability theory proved to be 
so successful that, apart from its simplicity, it enabled one to embrace the 
classical branches of probability theory and, at the same time, it paved the 
way for the development of new chapters in it, in particular, the theory of 
random (or stochastic) processes. 

In the theory of random processes, various classes of processes have been 
studied in depth. Theories of processes with independent increments, Markov 
processes, stationary processes, among others, have been constructed. In the 
formation and development of the theory of random processes, a significant 
event was the realization that the construction of a "general theory of ran
dom processes" requires the introduction of a flow of a-algebras (a filtration) 
F = (Ftk::o supplementing the triple (n, F, P), where F t is interpreted as 
the collection of events from F observable up to time t. 

It is this assumption of the presence on (n, F, P) of a flow F = (Ftk~o 
that has given rise to such objects as Markov times or stopping times, adapted 
processes, optional and predictable a-algebras, martingales, local martingales, 
semimartingales, the stochastic integral, the Ito change of variables formula, 
etc., which are the ingredients of the theory of stochastic calculus. 

Thus, stochastic calculus axiomatizes the concept of a stochastic basis 

B = (n, F, F = (Ftk::o, P), 

which lies at the basis of our entire discussion. Here (n, F, P) is a probability 
space, and F is some distinguished flow of a-algebras. 

The formation of the concept of a "stochastic basis" as one of the specifica
tions of a probability space passed through many stages of discussion of par
ticular cases, refinements, generalizations, etc. Here the theory of stochastic 
integration for Brownian motion and a centered Poisson measure, developed 
by Ito, was crucial. 

In the first chapter of this volume, an introduction is given to stochastic cal
culus which is called upon for presenting various aspects of Brownian motion 
and its connection with the theory of partial differential equations, the latter 
being the fundamental principle of Kolmogorov's classical paper "Analytical 
Methods in Probability Theory" . 

Stochastic integration theory has been brought to perfection for the most 
part in random processes that are solutions of stochastic differential equa
tions which, as we have said, are a particular case of semimartingales - that 
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wide class of random processes for which stochastic calculus gives a powerful 
method of analysis. 

The second chapter is devoted specifically to the theory of stochastic differ
ential equations as well as stochastic evolution equations and the stochastic 
calculus of variations (or the Malliavin calculus), a highly effective proba
bilistic apparatus for study in the theory of partial differential equations, 
theoretical physics, and ergodic theory. 

The third chapter is devoted to the general theory of stochastic calculus 
proper on probability spaces with filtrations. It presents the basic elements 
of the general theory of random processes, stochastic integration over semi
martingales, and a number of their applications. 

The ideas and methods of stochastic calculus traditionally have found and 
still find application in diverse sections of probability theory and mathematical 
statistics. This is illustrated, in particular, in the fourth chapter, in which the 
methods of martingale theory and stochastic calculus are applied to study 
questions of the weak convergence of random processes considered as random 
elements with values in metric spaces. 

The contributions made by the team of authors of this volume, S.V. An
ulova, A.Yu. Veretennikov, N.V. Krylov, RSh. Liptser and A.N. Shiryaev 
are as follows: Chap. 1 was written by N.V. Krylov; Chap. 2, Part I, §§1, 3, 
4; Chap. 2, Part II; Chap. 2, Part III were written by A.Yu. Veretennikov; 
Chap. 2, Part I, §§2, 5, 6 were written by S.V. Anulova; Chap. 3 was writ
ten by RSh. Liptser and A.N. Shiryaev; Chap. 4, Part II was written by 
RSh. Liptser; Chap. 4, Part I was written by A.N. Shiryaev. 

A.N. Shiryaev 


