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Preface

The Differential Geometry in the title of this book is the study of the geometry

of curves and surfaces in three-dimensional space using calculus techniques.

This topic contains some of the most beautiful results in Mathematics, and

yet most of them can be understood without extensive background knowledge.

Thus, for virtually all of this book, the only pre-requisites are a good working

knowledge of Calculus (including partial differentiation), Vectors and Linear

Algebra (including matrices and determinants).

Many of the results about curves and surfaces that we shall discuss are pro-

totypes of more general results that apply in higher-dimensional situations. For

example, the Gauss–Bonnet theorem, treated in Chapter 11, is the prototype of

a large number of results that relate ‘local’ and ‘global’ properties of geometric

objects. The study of such relationships formed one of the major themes of

20th century Mathematics.

We want to emphasise, however, that the methods used in this book are

not necessarily those which generalise to higher-dimensional situations. (For

readers in the know, there is, for example, no mention of ‘connections’ in the

remainder of this book.) Rather, we have tried at all times to use the simplest

approach that will yield the desired results. Not only does this keep the pre-

requisites to an absolute minimum, it also enables us to avoid some of the

conceptual difficulties often encountered in the study of Differential Geometry

in higher dimensions. We hope that this approach will make this beautiful

subject accessible to a wider audience.

It is a cliché, but true nevertheless, that Mathematics can be learned only

by doing it, and not just by reading about it. Accordingly, the book contains

over 200 exercises. Readers should attempt as many of these as their stamina

permits. Full solutions to all the exercises are given at the end of the book, but
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vi Preface

these should be consulted only after the reader has obtained his or her own

solution, or in case of desperation. We have tried to minimise the number of

instances of the latter by including hints to many of the less routine exercises.

Preface to the Second Edition

Few books get smaller when their second edition appears, and this is not one of

those few. The largest addition is a new chapter devoted to hyperbolic (or non-

Euclidean) geometry. Quite reasonably, most elementary treatments of this sub-

ject mimic Euclid’s axiomatic treatment of ordinary plane geometry. A much

quicker route to the main results is available, however, once the basics of the

differential geometry of surfaces have been established, and it seemed a pity

not to take advantage of it.

The other two most significant changes were suggested by commentators on

the first edition. One was to treat the tangent plane more geometrically - this

then allows one to define things like the first and second fundamental forms

and the Weingarten map as geometric objects (rather than just as matrices).

The second was to make use of parallel transport. I only partly agreed with

this suggestion as I wanted to preserve the elementary nature of the book,

but in this edition I have given a definition of parallel transport and related it

to geodesics and Gaussian curvature. (However, for the experts reading this,

I have stopped just short of introducing connections.)

There are many other smaller changes that are too numerous to list,

but perhaps I should mention new sections on map-colouring (as an appli-

cation of Gauss-Bonnet), and a self-contained treatment of spherical geome-

try. Apart from its intrinsic interest, spherical geometry provides the simplest

‘non-Euclidean’ geometry and it is in many respects analogous to its hyperbolic

cousin. I have also corrected a number of errors in the first edition that were

spotted either by me or by correspondents (mostly the latter).

For teachers thinking about using this book, I would suggest that there

are now three routes through it that can be travelled in a single semester,

terminating with one of chapters 11, 12 or 13, and taking in along the way the

necessary basic material from chapters 1–10. For example, the new section on

spherical geometry might be covered only if the final destination is hyperbolic

geometry.

As in the first edition, solutions to all the exercises are provided at the

end of the book. This feature was almost universally approved of by student

commentators, and almost as universally disapproved of by teachers! Being

one myself, I do understand the teachers’ point of view, and to address it
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I have devised a large number of new exercises that will be accessible online

to all users of the book, together with a solutions manual for teachers, at

www.springer.com.

I would like to thank all those who sent comments on the first edition, from

beginning students through to experts - you know who you are! Even if I did not

act on all your suggestions, I took them all seriously, and I hope that readers

of this second edition will agree with me that the changes that resulted make

the book more useful and more enjoyable (and not just longer).
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