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Introduction 

The main object of this book is to reorient and revitalize classical geometry 
in a way that will bring it closer to the mainstream of contemporary 
mathematics. The postulational basis of the subject will be radically 
revised in order to construct a broad-scale and conceptually unified 
treatment. 

The familiar figures of classical geometry-points, segments, lines, 
planes, triangles, circles, and so on-stem from problems in the physical 
world and seem to be conceptually unrelated. However, a natural setting 
for their study is provided by the concept of convex set, which is compara­
tively new in the history of geometrical ideas. The familiarfigures can then 
appear as convex sets, boundaries of convex sets, or finite unions of 
convex sets. Moreover, two basic types of figure in linear geometry are 
special cases of convex set: linear space (point, line, and plane) and 
halfspace (ray, halfplane, and halfspace). Therefore we choose convex set 
to be the central type of figure in our treatment of geometry. How can the 
wealth of geometric knowledge be organized around this idea? By defini­
tion, a set is convex if it contains the segment joining each pair of its 
points; that is, if it is closed under the operation of joining two points to 
form a segment. But this is precisely the basic operation in Euclid. Our 
point of departure is to take the operation of joining two points to form a 
segment as fundamental, and to throw the burden of unifying the material 
on the consistent and relentless exploitation of this operation. 

The postulates then will not involve complex ideas or complicated 
figures, but will state elementary properties of the join operation that can 
be grasped intuitively and verified concretely in planar diagrams. 

The postulates are formulated as universal properties of points. Thus, 
there are no exceptional or degenerate cases to be excluded. This is in 

xv 
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striking contrast with classical Euclidean postulates, such as: two distinct 
points determine a line; three noncollinear points determine a plane. As a 
result, proofs usually involve the application of the postulates as general 
principles and there is little or no need to consider the special or degener­
ate cases that arise so often in conventional treatments of Euclidean 
geometry. 

A salient feature of the treatment is its freedom from the classical 
restriction to the study of geometries that are, at most, three-dimensional. 
Indeed, our postulates are dimension free-they involve no dimensionality 
assumption, explicit or implicit. 

Consequently a major portion of the development is dimension free and 
is applicable to spaces of arbitrary dimension, finite or infinite. (This belies 
a widespread belief that the only effective way to study higher dimensional 
geometry is by the intervention of linear algebra.) 

How does the theory compare with Euclidean geometry? The postulates 
are abstracted from Euclidean propositions, and the theory may be consid­
ered a generalization of Euclidean geometry. It is, however, much broader 
-the theory has been freed from constraints that arose naturally in the 
historical evolution of Euclidean geometry but now impede its develop­
ment. Many familiar Euclidean propositions-in addition to the dimen­
sional restriction mentioned above-are omitted from the postulate set. 
These include: (i) the Euclidean parallel postulate; (ii) the proposition that 
of three distinct collinear points, one is between the other two; and (iii) 
two distinct points determine a line. Moreover, the treatment is nonmetri­
cal-no postulates for congruence have been assumed. 

Can this brave new geometrical world be achieved merely by referring 
to a segment as the join of two points? Of course not. A reanalysis and 
reconstruction of classical geometry in terms of the join operation is 
required. First of all the join operation is not to be restricted artificially, it 
must apply equally well to all pairs of points, distinct or coincident. Even 
more important, the operation must be generalized to apply to all pairs of 
geometric figures. 

In a Euclidean geometry, we define the join of points a, b, denoted by 
a' b or ab, to be the open segment with endpoints a and b if a =F band 
define the join of a point a and itself to consist of a. The operation join is 
extended to apply to any two figures A and B in a natural way: The join 
A . B or AB, of A and B, is the union of all joins ab where point a ranges 
over A and point b over B. 

There is, in Euclidean geometry, a second important operation-that of 
extending a segment indefinitely to form a ray. This can be treated as a 
sort of inverse operation to join and suggests the following 

Definition. Let a and b be any points. Then a / b, the extension of a from b, 
is the set of points x which satisfy the condition that bx contain point a. 
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alb .................. • x a b 

This operation is extended in the same way as join to define A / B, the 
extension of A from B, for any two figures A and B. 

Chapter I provides an introduction to the abstract theory by studying 
the join and extension operations in Euclidean geometry in a concrete, 
intuitive, exploratory manner. 

The formal development of the theory begins in Chapter 2, and is based 
on the idea of join operation. Let J be a set of elements (points) and . an 
operation which assigns to each ordered pair (a, b) of elements of J a 
uniquely determined subset of J, denoted by a· b or abo Then the operation 
. is a join operation (in set J) and a· b is the join of a and b. We assume 
that the set J and the join operation . satisfy four postulates suggested by 
elementary properties of the Euclidean join operation. Convex sets are 
defined as closed under join, and their elementary properties deduced. The 
concepts of geometrical or intrinsic interior and closure of a convex set are 
defined. These ideas pervade the theory. 

The convex hull of an arbitrary set is introduced in Chapter 3. Join 
theoretic formulas for convex hulls are derived. Polytopes are treated as 
convex hulls of finite sets. 

In Chapter 4, the extension a / b of two elements a, b of J is defined, in 
the same way as Euclidean extension, in terms of join. Three new pos­
tulates involving extension are introduced to complete the basic postulate 
set for the theory. Speaking geometrically, the concept of ray (or halfline) is 
now available in the abstract theory. In formal terms, we have at our 
command an algebra, of strong deductive power, involving two «inverse" 
operations join . and extension/. 

Chapter 5 introduces the idea of join geometry, out basic object of 
study. A join geometry is a model of the theory~it is a pair (J, .) 
composed of a set J and a join operation . in J, which satisfy the basic set 
of postulates. The notion of isomorphism of join geometries is studied. A 
collection of join geometries that are used as illustrative examples and 
counterexamples is presented. Real n-space Rn is converted into a join 
geometry by defining join in the natural manner. An infinite dimensional 
analogue of Rn is shown to contain a pathological convex set-a nonempty 
convex set whose interior is empty. 

Chapter 6 studies linear sets (or linear spaces) defined as closed under 
join and extension. Among the topics considered are generation of linear 
sets, linear independence, and how line should be defined. It is interesting 
that linear sets of a join geometry bear analogies to subgroups of an 
abelian group. 

Chapter 7 studies the idea of extreme set of a convex set. An extreme set 
of a convex set A is loosely a convex subset of A which is «peripheral" to 
A. The idea is suggested by, and is a generalization of, the classical notion 
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of vertices, edges, and faces of a polyhedron. Two types of extreme sets, 
called components and faces, play important roles in the study of the 
structure of a convex set and are singled out for special study. 

Chapter 8 deals with rays and halfspaces. A ray or haljline is defined as 
a set p / a, where p and a are points; p is its endpoint. Similarly, let L be a 
nonempty linear set, and a a point. Then L / a is a haljspace of L, or simply 
a haljspace; L is its edge. A study of rays is given, concentrating on rays 
with a common endpoint. This is generalized to an analogous treatment for 
halfspaces with a common edge. A halfspace of a linear set in a join 
geometry is analogous to a coset of a subgroup in an abelian group. 

Chapter 9 presents a treatment of cones and hypercones based on the 
material of Chapter 8. A cone is the union of a family of rays that have a 
common endpoint. A hypercone is the union of a family of halfspaces that 
have a common edge. 

In Chapter 10, the family of halfspaces of a linear space is converted 
into a geometrical system-called a factor geometry-by defining a join 
operation in it in a natural way. Factor geometries and join geometries 
share many common properties but differ markedly as algebraic systems, 
since a factor geometry has an identity element and its elements have 
inverses. The development has strong-though unforced-analogies with 
algebraic theories of congruence relations and factor or quotient systems. 

Chapter 11 is devoted to the theory of exchange geometries, which are 
join geometries that satisfy a postulate equivalent to "two points determine 
a line." A theory of dimension is developed in an exchange geometry and 
the familiar incidence and intersection properties of lines and planes in 
Euclidean 3-space is generalized to finite-dimensional linear spaces. 

Chapter 12 studies ordered geometries, which are join geometries that 
satisfy the Euclidean proposition: Of three distinct collinear points, one is 
between the other two. Among the results derived are basic geometric 
properties of polytopes; conditions for the separation of linear spaces by 
linear subspaces; the theorems of Radon, Helly, and Caratheodory on 
convex sets; and a striking formula for the linear space generated by a 
finite set of points. 

In Chapter 13 various properties of polytopes in Rn are extended to 
ordered geometries. In particular, polytopes are related to intersections of 
halfspaces. 

Since our approach is so different from the usual one, we felt compelled 
to develop the material slowly and deliberately with much concrete geo­
metric motivation. This was done because of the unfamiliarity, not the 
inherent difficulty, of the treatment. The book assumes little formal 
knowledge of geometry and indeed little beyond high school algebra and 
some familiarity with intuitive set theory. 

The book can be studied rather flexibly. Chapter 1 helps to provide a 
transition from intuitive informal geometry to an axiomatic formal devel­
opment and can be read by able high school upperclassmen. The reader 
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who has some degree of mathematical maturity need not begin with 
Chapter 1 but can use it as a source of supplementary material for the first 
few chapters. Chapters 2-6 form a basic course sequence in the abstract 
theory. (Some sections may be omitted in a first reading, for example: 2.20, 
2.25,2.26,3.12-3.15, 4.20, 4.21, 4.23-4.26, and 6.20-6.24.) Except for the 
definition of join geometry, Chapter 5 can be skirted. But the reader is 
advised to make some contact with the models presented, since they shed 
so much light on the theory. 

Here are some longer sequences with different emphases: Chapters 2-7; 
2-6,8; 2-6, 11; 2-6, 8, 9; 2-6, 8-10; 2-6, 8, 12; 2-8, 12, 13. A structure 
chart which indicates the interrelations of the chapters appears below. 
Footnotes to the titles of Chapters 7, 8, 10, and 12 provide more detail on 
the interrelations of the chapters. 

The text is accompanied by a large and varied collection of exercises. 
They include simple exploratory exercises, verifying or testing a conjecture 
in a model, proofs that require only a few steps, difficult problems (the 
most difficult are indicated by an asterisk), and problems that involve 
extending the theory, labelled Projects. 

Although the book was written as an undergraduate text, graduate 
students and mathematicians may find it of interest. There may be curios­
ity about a contemporary approach to the classical geometry which is our 
heritage from the Greeks. Those for whom geometry has little intuitive 
appeal may be attracted by the striking and unexpected analogies that 
appear between join geometries and algebraic structures, especially abelian 
groups. Specialists in the theory of convex sets may be interested both 
because of the broad vistas that seem to be opened up by the join theoretic 
axiomatization of the subject and the questions that arise on the extent to 
which the familiar theory of convexity in IRn can be extended to a join 
geometry, or to special types of join geometries. 
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