Applied Mathematical Sciences Volume 7

Applied Mathematical Sciences

EDITORS

Fritz John Courant Institute of Mathematical Sciences New York University New York, NY 10012 J.E. Marsden Department of Mathematics University of California Berkeley, CA 94720 Lawrence Sirovich Division of Applied Mathematics Brown University Providence, RI 02912

ADVISORS

M. Ghil New York University

J.K. Hale Brown University

J. Keller Stanford University

B. Matkowsky Northwestern University J.T. Stuart Imperial College

A. Weinstein University of California

K. Kirchgässner Universität Stuttgart

EDITORIAL STATEMENT

The mathematization of all sciences, the fading of traditional scientific boundaries, the impact of computer technology, the growing importance of mathematicalcomputer modelling and the necessity of scientific planning all create the need both in education and research for books that are introductory to and abreast of these developments.

The purpose of this series is to provide such books, suitable for the user of mathematics, the mathematician interested in applications, and the student scientist. In particular, this series will provide an outlet for material less formally presented and more anticipatory of needs than finished texts or monographs, yet of immediate interest because of the novelty of its treatment of an application or of mathematics being applied or lying close to applications.

The aim of the series is, through rapid publication in an attractive but inexpensive format, to make material of current interest widely accessible. This implies the absence of excessive generality and abstraction, and unrealistic idealization, but with quality of exposition as a goal.

Many of the books will originate out of and will stimulate the development of new undergraduate and graduate courses in the applications of mathematics. Some of the books will present introductions to new areas of research, new applications and act as signposts for new directions in the mathematical sciences. This series will often serve as an intermediate stage of the publication of material which, through exposure here, will be further developed and refined. These will appear in conventional format and in hard cover.

MANUSCRIPTS

The Editors welcome all inquiries regarding the submission of manuscripts for the series. Final preparation of all manuscripts will take place in the editorial offices of the series in the Division of Applied Mathematics, Brown University, Providence, Rhode Island. A.C. Pipkin

Lectures on Viscoelasticity Theory Second Edition

With 17 Illustrations

Springer Science+Business Media, LLC

A.C. Pipkin Division of Applied Mathematics Brown University Providence, RI 02912 U.S.A.

AMS Classification: 73FXX

Library of Congress Cataloging in Publication Data
Pipkin, A. C.
Lectures on Viscoelasticity theory.
(Applied mathematical sciences; v. 7)
Includes index.
I. Viscoelasticity. I. Title. II. Series: Applied
mathematical sciences (Springer-Verlag New York Inc.);
v. 7.
QA1.A647 vol. 7 1986 510 s 86-6538
[QA931]

© 1972, 1986 by Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1986

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer Science+Business Media, LLC

987654321

ISBN 978-0-387-96345-7 ISBN 978-1-4612-1078-8 (eBook) DOI 10.1007/978-1-4612-1078-8

TABLE OF CONTENTS

	IN	TRODUCTION	1
I.	VI	SCOELASTIC RESPONSE IN SHEAR	4
	1.	Stress Relaxation	4
	2.	Creep	7
	3.	Response Functions	8
	4.	Models	9
	5.	Superposition	11
	6.	Tensile Response	13
	7.	Relation Between Modulus and	
		Compliance	14
		Sinusoidal Shearing	16
		Nomenclature	18
		Energy Storage and Loss	18
	11.	Oscillation with Increasing Amplitude	19
II.	FC	URIER AND LAPLACE TRANSFORMS	22
	1.	Fourier Transforms	22
	2.	Two-sided Laplace Transforms	23
	3.	Laplace Transforms	24
	4.	Elementary Formulas	26
	5.	Convolutions	28

III.		LATIONS BETWEEN MODULUS AND	33		
	1.	Limits and Moments: Fluids	33		
	2.	Limits and Moments: Solids	36		
	3.	Solids and Fluids	38		
	4.	Scale-Invariant Response	39		
		Approximate Transform Inversion	41		
		Direct Approximation	42		
		Approximate Relation Between Modulus			
		and Complex Modulus	45		
	8.	Graphs of Moduli and Compliances	46		
	9.	Completely Monotone Moduli	47		
IV.	so	ME ONE-DIMENSIONAL DYNAMICAL			
	PR	OBLEMS	51		
	1.	Torsional Oscillations	52		
		a. Viscous Fluid	53		
		b. Elastic Solid	53		
		c. Maxwell Fluid	53		
		d. Power-law Solid	54		
		e. Real Solids with Small Losses	55		
	2.	Plane Shear Waves	56		
		a. Elastic Solid	58		
		b. Viscous Fluid	58		
		c. Power-law Solids	60		
		1. Long-Time Behavior	62		
		2. Short-Time Behavior	63		
		3. Wide Saddle-Points	65		
		d. Real Solids with Small Losses	67		
		e. The Elastic Precursor	72		
		f. Long-Time Behavior	73		
V.	STRESS ANALYSIS				
	1.	Quasi-Static Approximation	77		
	2. Stress-Strain Relations				
	3. Simplest Deformations of Isotropic				
	Materials				
	4.	4. Simple Tension: Basic Approximation			
	~	Methods	82		
	5.	The Correspondence Principle	88		

	6.	Example: Flat-Headed Punch	90	
	7.	Example: Tube under Internal Pressure	91	
	8.	Incompressible Materials	95	
VI.	THERMAL EFFECTS			
	1.	The Time-Temperature Shift Factor	98	
	2.	Example: Runaway	102	
	3.	Variable-Temperature Histories	106	
	4.	Example: Simple Tension of a		
		Cooling Rod	110	
	5.	Thermal Expansion	112	
VII.	LAI	RGE DEFORMATIONS WITH SMALL		
	STR	RAINS	115	
	1.	Example: Simple Rotation	116	
	2.	Example: Torsion	116	
	3.	Small Distortions with Large		
		Rotations	117	
	4.	Relative Strain	119	
	5.	Isotropic Materials	121	
	6.	Fluids	121	
	7.	Example: Steady Simple Shearing	122	
	8.	Example: Oscillatory Shearing	123	
	9.	Motions with Uniform Velocity Gradient	124	
	10.	Anisotropic Fluids	128	
VIII.	SLC	OW VISCOELASTIC FLOW	131	
	1.	Viscoelastic Flow	131	
	2.	Flow Diagnosis	131	
	3.	Slow Viscoelastic Flow:		
		Asymptotic Approximations	136	
	4.	Slow Viscoelastic Flow:		
		Three-Dimensional Equations	138	
	5.	Orders of Approximation in Slow Motion	143	
	6.	The Rivlin-Ericksen Tensors	143	
	7.	Solution of Problems	145	
	8.	Ordinary Perturbations	148	
	9.	A Useful Identity	149	
	10.	Plane Flow	151	
	11.	Flow in Tubes	153	

157

158

IX. VISCOMETRIC FLOW 1. Stress

2.	Example: Channel Flow	159
3.	Slip Surfaces, Shear Axes, and Shear Rate	160
4.	Dynamical Problems	163
5.	Flow in Tubes	163
6.	Viscometric Equation in Terms of	
	Rivlin-Ericksen Tensors	166
7.	Centripetal Effects	168
8.	Boundary Layers	171
SOLUT	IONS	174

INDEX

181