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Series Preface 

Mathematics is playing an ever more important role in the physical and 
biological sciences, provoking a blurring of boundaries between scientific 
disciplines and a resurgence of interest in the modern as well as the clas­
sical techniques of applied mathematics. This renewal of interest, both in 
research and teaching, has led to the establishment of the series: Texts in 
Applied Mathematics (TAM). 

The development of new courses is a natural consequence of a high 
level of excitement on the research frontier as newer techniques, such as 
numerical and symbolic computer systems, dynamical systems, and chaos, 
mix with and reinforce the traditional methods of applied mathematics. 
Thus, the purpose of this textbook series is to meet the current and future 
needs of these advances and encourage the teaching of new courses. 

TAM will publish textbooks suitable for use in advanced undergraduate 
and beginning graduate courses, and will complement the Applied Mathe­
matical Sciences ( AMS) series, which will focus on advanced textbooks and 
research level monographs. 



Foreword 

This book is based on a one-semester course for graduate students in the 
physical sciences and applied mathematics. No great mathematical back­
ground is needed, but the student should be familiar with the theory of 
analytic functions of a complex variable. Since the course is on problem­
solving rather than theorem-proving, the main requirement is that the stu­
dent should be willing to work out a large number of specific examples. 

The course is divided about equally into three parts. The first part, on 
Fredholm and Hilbert-Schmidt theory, is mostly theoretical. The last two 
parts emphasize problem-solving, using complex variables. The solution of 
convolution equations by using one- and two-sided Laplace transforms is 
covered in the second part, and the third part deals with Cauchy principal 
value integrals. 

The chapters on Fredholm theory and Hilbert-Schmidt theory stress the 
analogy with linear algebra, since that is the point of these subjects, and 
much of the discussion is presented in terms of finite-dimensional matrices 
and vectors. Students who understand these chapters should be able to read 
the more detailed treatment given by Riesz and Sz.-Nagy without getting 
lost. 

In preparation for the material on convolution equations, there is a short 
introduction to the Laplace transform. For reference, this chapter also in­
cludes proofs of some of the theorems that are taken for granted in lectures. 
Many of these proofs are adapted from Widder's book on Laplace trans­
forms. 

The character of Laplace transforms as analytic functions is emphasized 
in the chapters on convolution equations. The use of analytic function the­
ory continues in the final part of the course, which begins with a chapter on 
the evaluation of principal value integrals. Again for reference, this chapter 
also includes proofs of some of the theorems that are being used. Widder''s 
book on integral transforms is a good source for such theorems. 

The principal value equations that we consider always have some or all 
of the real axis as the integration contour. Understanding this case seems 
to be sufficient for understanding the results about arbitrary contours in 
Muskhelishvili's treatise, and in fact we can go a little further than Muskhe­
lishvili in the matter of infinite contours. 



Vlll Foreword 

The complex variable methods that are used in the last two-thirds of the 
course put the student in a position to understand solutions based on the 
Wiener-Hop£ technique. There is only a relatively short chapter on Wiener­
Hop£ equations, giving a few examples in which the analysis is completely 
concrete. 

I would like to thank Larry Sirovich for his encouragement in this project. 
Kate MacDougall deserves particular thanks for her skill and patience in 
preparing the manuscript. 

Allen C. Pipkin 
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