Graduate Texts in Mathematics 88

Editorial Board F. W. Gehring P. R. Halmos (Managing Editor) C. C. Moore Richard S. Pierce

Associative Algebras

Springer-Verlag New York Heidelberg Berlin

Richard S. Pierce

Professor of Mathematics University of Arizona Tucson, Arizona 85721 USA

Editorial Board

P. R. Halmos

F. W. Gehring

Managing Editor Department of Mathematics Indiana University Bloomington, Indiana 47401 USA Department of Mathematics University of Michigan Ann Arbor, Michigan 48104 USA C. C. Moore

Department of Mathematics University of California Berkeley, CA 94720 USA

AMS Subject Classification (1980): 16-01

Library of Congress Cataloging in Publication Data Pierce, Richard S. Associative algebras. (Graduate texts in mathematics; 88) Bibliography: p. Includes index. 1. Associative algebras. I. Title. II. Series. QA251.5.P5 512'.24 82-862 AACR2

© 1982 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1982 All rights reserved. No part of this book may be translated or reproduced in any form without permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

Typeset in Hong Kong by Asco Trade Typesetting Ltd.

987654321

ISBN 978-1-4757-0165-4 ISBN 978-1-4757-0163-0 (eBook) DOI 10.1007/978-1-4757-0163-0

Preface

For many people there is life after 40; for some mathematicians there is algebra after Galois theory. The objective of this book is to prove the latter thesis. It is written primarily for students who have assimilated substantial portions of a standard first year graduate algebra textbook, and who have enjoyed the experience. The material that is presented here should not be fatal if it is swallowed by persons who are not members of that group.

The objects of our attention in this book are associative algebras, mostly the ones that are finite dimensional over a field. This subject is ideal for a textbook that will lead graduate students into a specialized field of research. The major theorems on associative algebras include some of the most splendid results of the great heros of algebra: Wedderburn, Artin, Noether, Hasse, Brauer, Albert, Jacobson, and many others. The process of refinement and clarification has brought the proof of the gems in this subject to a level that can be appreciated by students with only modest background. The subject is almost unique in the wide range of contacts that it makes with other parts of mathematics. The study of associative algebras contributes to and draws from such topics as group theory, commutative ring theory, field theory, algebraic number theory, algebraic geometry, homological algebra, and category theory. It even has some ties with parts of applied mathematics.

There is no intention to make this book an encyclopedia of associative algebra. Such a book would be a useful research tool, but it would not fit the needs of a novice mathematician. On the other hand, it is more than a rehash of existing expositions of the theory of associative algebras. The classical results of the subject are explored more deeply than in most studentoriented expositions of associative algebras, and the recent developments in the theory of algebras are liberally sampled. The serious student will find a substantial variety of challenges and rewards in the book. Roughly speaking, the book is divided into two parts. Part one occupies chapters one through eleven. It could be called "the classical theory of associative algebras." This first part contains the basic structure and representation theorems for associative algebras: Wedderburn's Structure Theorem for Semisimple Algebras, Wedderburn's Principal Theorem, the structure of projective modules of Artinian algebras, and the recent work on representation types. Part two of the book concentrates on central simple algebras. It is organized around the concept of the Brauer group of a field. Chapter 12 builds the tools that are needed to construct the edifice of central simple algebras: the Jacobson Density Theorem, the Noether– Skolem Theorem, and the Double Centralizer Theorem. The topics that part two covers are fairly traditional: splitting fields, cohomological characterization of the Brauer group, cyclic algebras, the reduced norm and its applications, the Brauer groups of local and global fields, and finally an introduction to Amitsur's work on generic algebras.

The difficulty level of the book is a piecewise increasing graph. Each chapter begins with elementary material and escalates in complexity. The last few sections of each chapter contain the specialized and (usually) more difficult topics. At the same time, the median difficulty level of the chapters follows an increasing curve. Probably the best advice for readers of the book is to start at the beginning and plod through it to the end.

Every section of the book is equipped with at least one exercise. The exercises are included for the usual reasons: to keep the serious students awake; to ease the author's conscience pangs over omitted proofs; and to include results for which there is no room in the text. Most of the exercises are of the "follow your nose" variety. The non-trivial problems are accompanied by generous hints. In fact, some of the hints are so extensive that they might justifiably be called proofs.

Following an established tradition, we conclude this preface with acknowledgments and thanks to the friends who supported the preparation of the book. A list of these persons should include the names of a couple of dozen listeners who endured the author's lectures at the University of Connecticut, the University of Arizona, and the University of Hawaii. Most of these people will remain anonymous, but special mention is due to Javier Gomez, Oma Hamara, Eliot Jacobson, Bill Ullery, Bill Velez, and Kwang-Shang Wong whose eagle eyes found some of the numerous errors in the preliminary manuscript. Chuck Vinsonhaler deserves particular recognition for using several parts of the book as a basis for his own lectures. His suggestions and corrections have been extremely valuable.

The majority of credit for the completion of this book is owed to Marilyn Pierce. It was her patience and impatience that kept the project moving from its beginning to the end. She typed, corrected, and recorrected the whole manuscript. Her help and encouragement were always given generously, even though she has long held the author's solemn written promise never to write another book. It is to Marilyn that this book is dedicated.

Contents

Chapter 1

The Associative Algebra	1
1.1. Conventions	1 تر
1.2. Group Algebras	4
1.3. Endomorphism Algebras	6
1.4. Matrix Algebras	8
1.5. Finite Dimensional Algebras over a Field	10
1.6. Quaternion Algebras	13
1.7. Isomorphism of Quaternion Algebras	16
Chapter 2	
Modules	21
2.1. Change of Scalars	21
2.2. The Lattice of Submodules	24
2.3. Simple Modules	27
2.4. Semisimple Modules	29
2.5. Structure of Semisimple Modules	31
2.6. Chain Conditions	33
2.7. The Radical	37
Chapter 3	
The Structure of Semisimple Algebras	40

3.1.	Semisimple Algebras	40
3.2.	Minimal Right Ideals	42
3.3.	Simple Algebras	44

vii

3.4. 3.5. 3.6.	Matrices of Homomorphisms Wedderburn's Structure Theorem Maschke's Theorem	47 49 51
Cha The	pter 4 Radical	55
 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 	The Radical of an Algebra Nakayama's Lemma The Jacobson Radical The Radical of an Artinian Algebra Artinian Algebras Are Noetherian Nilpotent Algebras The Radical of a Group Algebra Ideals in Artinian Algebras	55 56 58 61 63 65 67 69
Cha Ind	pter 5 ecomposable Modules	72
5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	Direct Decompositions Local Algebras Fitting's Lemma The Krull–Schmidt Theorem Representations of Algebras Indecomposable and Irreducible Representations	72 73 75 76 80 83
Cha Pro	pter 6 jective Modules over Artinian Algebras	88
 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 	Projective Modules Homomorphisms of Projective Modules Structure of Projective Modules Idempotents Structure of Artinian Algebras Basic Algebras Representation Type	88 91 92 94 98 101 103
Cha _l Fini	pter 7 ite Representation Type	108
 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 	The Brauer–Thrall Conjectures Bounded Representation Type Sequence Categories Simple Sequences Almost Split Sequences Almost Split Extensions Roiter's Theorem	108 111 113 116 118 120 122

Chapter 8

Reț	presentation of Quivers	126
8.1.	Constructing Modules	126
8.2.	Representation of Quivers	130
8.3.	Application to Algebras	133
8.4.	Subquivers	135
8.5.	Rigid Representations	137
8.6.	Change of Orientation	142
8.7.	Change of Representation	144
8.8.	The Quadratic Space of a Quiver	147
8.9.	Roots and Representations	151

Chapter 9	
Tensor Products	157
9.1. Tensor Products of R-modules	157
9.2. Tensor Products of Algebras	163
9.3. Tensor Products of Modules over Algebras	166
9.4. Scalar Extensions	168
9.5. Induced Modules	171
9.6. Morita Equivalence	175

Chapter 10 Separable Algebras 179 10.1. Bimodules 179 10.2. Separability 181 10.3. Separable Algebras Are Finitely Generated 183 10.4. Categorical Properties 185 10.5. The Class of Separable Algebras 187 10.6. Extensions of Separable Algebras 188 10.7. Separable Algebras over Fields 190 10.8. Separable Extensions of Algebras 192

Chapter 11	
The Cohomology of Algebras	196
11.1. Hochschild Cohomology	196
11.2. Properties of Cohomology	200
11.3. The Snake Lemma	202
11.4. Dimension	205
11.5. Zero Dimensional Algebras	207
11.6. The Principal Theorem	209
11.7. Split Extensions of Algebras	211
11.8. Algebras with 2-nilpotent Radicals	214

Chapter 12	
Simple Algebras	218
12.1. Centers of Simple Algebras	218
12.2. The Density Theorem	220
12.3. The Jacobson-Bourbaki Theorem	221
12.4. Central Simple Algebras	224
12.5. The Brauer Group	227
12.6. The Noether–Skolem Theorem	230
12.7. The Double Centralizer Theorem	231
Chapter 13	
Subfields of Simple Algebras	234
13.1. Maximal Subfields	234
13.2. Splitting Fields	238
13.3. Algebraic Splitting Fields	241
13.4. The Schur Index	242
13.5. Separable Splitting Fields	244
13.6. The Cartan–Brauer–Hua Theorem	246
Chapter 14	
Galois Cohomology	250
14.1. Crossed Products	251
14.2. Cohomology and Brauer Groups	253
14.3. The Product Theorem	256
14.4. Exponents	259
14.5. Inflation	262
14.6. Direct Limits	264
14.7. Restriction	270
Chapter 15	
Cyclic Division Algebras	276
15.1. Cyclic Algebras	276
15.2. Constructing Cyclic Algebras by Inflation	280
15.3. The Primary Decomposition of Cyclic Algebras	281
15.4. Characterizing Cyclic Division Algebras	283
15.5. Division Algebras of Prime Degree	285
15.6. Division Algebras of Degree Three	288
15.7. A Non-cyclic Division Algebra	290
Chapter 16	
Norms	294
16.1. The Characteristic Polynomial	294
16.2. Computations	297

16.3. The Reduced Norm	2 9 9
16.4. Transvections and Dilatations	302
16.5. Non-commutative Determinants	305
16.6. The Reduced Whitehead Group	310

Chapte Divisi	r 17 on Algebras over Local Fields	314
17.1.	Valuations of Division Algebras	314
17.2.	Non-archimedean Valuations	317
17.3.	Valuation Rings	318
17.4.	The Topology of a Valuation	321
17.5.	Local Fields	325
17.6.	Extension of Valuations	328
17.7.	Ramification	330
17.8.	Unramified Extensions	334
17.9.	Norm Factor Groups	336
17.10.	Brauer Groups of Local Fields	338

Chapter 18

Division Algebras over Number Fields		342
18.1.	Field Composita	342
18.2.	More Extensions of Valuations	344
18.3.	Valuations of Algebraic Number Fields	348
18.4.	The Albert-Hasse-Brauer-Noether Theorem	352
18.5.	The Brauer Groups of Algebraic Number Fields	357
18.6.	Cyclic Algebras over Number Fields	359
18.7.	The Image of INV	361

Chapter 19

Division Algebras over Transcendental Fields	366
19.1. The Norm Form	366
19.2. Quasi-algebraically Closed Fields	370
19.3. Krull's Theorem	372
19.4. Tsen's Theorem	375
19.5. The Structure of $\mathbf{B}(K(\mathbf{x})/F(\mathbf{x}))$	376
19.6. Exponents of Division Algebras	379
19.7. Twisted Laurent Series	382
19.8. Laurent Series Fields	386
19.9. Amitsur's Example	390

Chapter 20 Varieties of Algebras	395
20.1. Polynomial Identities and Varieties	395
20.2. Special Identities	399

20.3 Identities for Central Simple Algebras	402
20.5. Rendered Identities	402
20.5. Generic Matrix Algebras	404
20.6. Central Polynomials	409
20.7. Structure Theorems	413
20.8. Universal Division Algebras	416
References	421
Index of Symbols	425
Index of Terms	431