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Preface 

For many people there is life after 40; for some mathematicians there is 
algebra after Galois theory. The objective ofthis book is to prove the latter 
thesis. It is written primarily for students who have assimilated substantial 
portions of a standard first year graduate algebra textbook, and who have 
enjoyed the experience. The material that is presented here should not be 
fatal if it is swallowed by persons who are not members of that group. 

The objects of our attention in this book are associative algebras, mostly 
the ones that are finite dimensional over a field. This subject is ideal for a 
textbook that will lead graduate students into a specialized field of research. 
The major theorems on associative algebras inc1ude some of the most 
splendid results of the great heros of algebra: Wedderbum, Artin, Noether, 
Hasse, Brauer, Albert, Jacobson, and many others. The process of refine
ment and c1arification has brought the proof of the gems in this subject to a 
level that can be appreciated by students with only modest background. 
The subject is almost unique in the wide range of contacts that it makes 
with other parts of mathematics. The study of associative algebras con
tributes to and draws from such topics as group theory, commutative ring 
theory, field theory, algebraic number theory, algebraic geometry, homo
logical algebra, and category theory. It even has some ties with parts of 
applied mathematics. 

There is no intention to make this book an encyc10pedia of associative 
algebra. Such a book would be a useful research tool, but it would not fit 
the needs of a novice mathematician. On the other hand, it is more than a 
rehash of existing expositions of the theory of associative algebras. The 
c1assical results ofthe subject are explored more deeply than in most student
oriented expositions of associative algebras, and the recent developments 
in the theory of algebras are liberally sampled. The serious student will 
find a substantial variety of challenges and rewards in the book. 

v 



VI Preface 

Roughly speaking, the book is divided into two parts. Part one occupies 
chapters one through eleven. It could be called "the c1assical theory of 
associative algebras." This first part contains the basic structure and rep
resentation theorems for associative algebras: Wedderburn's Structure 
Theorem for Semisimple Algebras, Wedderbum's Principal Theorem, the 
structure of projective modules of Artinian algebras, and the recent work on 
representation types. Part two of the book concentrates on central simple 
algebras. It is organized around the concept of the Brauer group of a 
field. Chapter 12 builds the tools that are needed to construct the edifice 
of central simple algebras: the Jacobson Density Theorem, the Noether
Skolem Theorem, and the Double Centralizer Theorem. The topics that 
part two covers are fairly traditional: splitting fields, cohomological char
acterization of the Brauer group, cyc1ic algebras, the reduced norm and its 
applications, the Brauer groups of local and global fields, and finally an 
introduction to Amitsur's work on generic algebras. 

The difficulty level of the book is a piecewise increasing graph. Each 
chapter begins with elementary material and escalates in complexity. The 
last few sections of each chapter contain the specialized and (usually) more 
difficult topics. At the same time, the median difficulty level of the chapters 
follows an increasing curve. Probably the best advice for readers ofthe book 
is to start at the beginning and plod through it to the end. 

Every section of the book Is equipped with at least one exercise. The 
exercises are inc1uded for the usual reasons: to keep the serious students 
awake; to ease the author's conscience pangs over omitted proofs; and to 
inc1ude results for which there is no room in the text. Most of the exercises 
are of the "follow your nose" variety. The non-trivial problems are ac
companied by generous hints. In fact, some of the hints are so extensive 
that they might justifiably be called proofs. 

Following an established tradition, we conc1ude this preface with ac
knowledgments and thanks to the friends who supported the preparation 
of the book. A list of these persons should inc1ude the names of a couple of 
dozen listeners who endured the author's lectures at the University of 
Connecticut, the University of Arizona, and the University of Hawaii. 
Most of these people will remain anonymous, but special mention is due to 
Javier Gomez, Oma Hamara, Eliot Jacobson, Bill Ullery, Bill Velez, and 
Kwang-Shang Wong whose eagle eyes found some of the numerous errors 
in the preliminary manuscript. Chuck Vinsonhaler deserves particular 
recognition for using several parts ofthe book as a basis for his own lectures. 
His suggestions and corrections have been extremely valuable. 

The majority of credit for the completion of this book is owed to Marilyn 
Pierce. It was her patience and impatience that kept the project moving from 
its beginning to the end. She typed, corrected, and recorrected the whole 
manuscript. Her help and encouragement were always given generously, 
even though she has long held the author's solemn written promise never to 
write another book. It is to Marilyn that this book is dedicated. 
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