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Preface 

This volume is based on courses on Statistical Mechanics which I have taught for 
many years at the Worcester Polytechnic Institute. My objective is to treat classical 
statistical mechanics and its modem applications, especially interacting particles, 
correlation functions, and time-dependent phenomena. My development is based 
primarily on Gibbs's ensemble formulation. 

Elementary Lectures in Statistical Mechanics is meant as a (relatively sophis­
ticated) undergraduate or (relatively straightforward) graduate text for physics 
students. It should also be suitable as a graduate text for physical chemistry stu­
dents. Physicists may find my treatment of algebraic manipulation to be more 
explicit than some other volumes. In my experience some of our colleagues are 
perhaps a bit over-enthusiastic about the ability or tendency of our students to 
complete gaps in the derivations. 

I emphasize a cyclic development of major themes. I could have begun with a 
fully detailed formal treatment of ensemble mechanics, as found in Gibbs's volume, 
and then given material realizations. I instead interleave formal discussions with 
simple concrete models. The models illustrate the formal definitions. The approach 
here gives students a chance to identify fundamental principles and methods before 
getting buried in ancillary details. 

There are lots of other good books on statistical mechanics. In reading them, I 
am often staggered by how much some of my colleagues know about statistical 
mechanics-far more than I do. I am even more staggered by their fai th that students 
can learn that displayed knowledge in the space of a semester or two. I have tried 
to write a "you really should know much of this" book rather than a "behold my 
sublime genius and overwhelming knowledge" book. The last three Lectures do 
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present a real research problem, drawn from my own papers, to convince students 
that they are now ready to read the primary literature for themselves. 

I note two approaches for causing students to learn theory. In the first approach, 
held by a sufficiently large majority that its supporters oft refer to it as the "only 
approach," students are expected to learn primarily by solving problems. In the 
second approach, students learn primarily by wrestling with the words of the author. 
Students who respond to the second approach, while interested in seeing worked 
examples, tend to view homework problems as as obstacle which must be traversed 
before they can spend time learning the material. If you are a student, be warned!: 
Many people think they only need to ponder problems rather than working them; 
few people actually do need to ponder problems rather than working them. 

These methods appear to me to represent underlying differences in how their 
supporters think. I myself learn from the latter method, but hope I have presented 
enough problems to satisfy students who need to work problems. The problems 
have a wide range of difficulty. The easiest problem requires a few lines of calcu­
lation; the final problem of the final Lecture has consumed hundreds of man-years 
of research without being solved. 1 also use homework problems to introduce sig­
nificant results not seen elsewhere in the text, so a perusal of unworked problems 
may prove worthwhile. The concept of naming problems is due to Mr. Mark Swan­
son, who initially advocated the procedure as a method for tagging rules in large 
complex games. 

On a parallel line, some students say "tell us what is true, not what is not true," 
while others find the mathematician's emphasis on elaborated counterexamples 
to be critical in sharpening their thinking about what a definition means. The 
mathematicians appear to have the better of this argument. 

At a few points my development differs from some other modem works: 
First, the material is arranged as "Lectures," not "Chapters." While some of 

the early Lectures have grown in writing, an hour-and-a-half presentation or two 
will cover almost any Lecture. The Lectures are grouped into five parts, covering 
(1) separable classical systems, (II) separable quantum systems, (ill) systems of 
interacting particles and cluster expansions, (IV) correlation functions and dynam­
ics, and (V) a research problem from the literature. Lectures are interleaved with 
"Asides." The Asides ease the passage between Lectures and supply material on 
the real foundations of statistical mechanics. 

Second, I am a firm believer in dotting i's and crossing t's. For example, note 
Aside C and its treatment of the so-called Gibbs Paradox, which Gibbs did not 
view as involving a paradox. Some instructors mix results from the canonical and 
microcanonical ensembles without discussing logical consistency. I have tried, 
probably unsuccessfully, to avoid inconsistency here. 

Third, in developing most of the material presented here, quantum mechanics 
has been reduced to its historically subordinate role. Most research in statistical 
mechanics of physical systems does not use quantum theory directly. Admittedly, 
if one wishes to compute the forces within a pair or cluster of atoms, quantum 
mechanics is indispensable. Similarly, to calculate the allowed vibration energies of 
a molecular system, one may well need quantum mechanics. However, interference 
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effects are seldom obvious except at low temperatures. The correct counting of 
states of indistinguishable particles at nonnal densities and room temperature was 
obtained by Gibbs in the last century using a purely classical argument. In cold 
dense systems, quantum corrections can become large. Quantum effects are treated 
inPartll. 

Fourth, I adhere rigorously to Gibbs [1] rather than Boltzmann [2] or 
Schroedinger [3] in asserting the primacy of the canonical over the microcanon­
ical ensemble, not the other way around. I believe that this choice maintains 
pedagogical simplicity and keeps a direct connection between theory and reality. 

Had I begun with the microcanonical ensemble, I would necessarily have begun 
with the elaborate demonstration that the microcanonical statistical weight for the 
whole of a large isolated physical system 

Wj = l/A (0.1) 

implies the canonical statistical weight 

(0.2) 

for a small part of the large isolated system. Real systems of fixed temperature are 
generally not small parts of equilibrium systems which have fixed energy, so this 
derivation is unphysical. This derivation also sacrifices the major advantage which 
Gibbs proved for his canonical ensemble approach, namely that his canonical 
ensemble is equally valid for small and large systems, while the transition from 
(0.1) to (0.2) is only useful for large systems. 

From a logical-theoretical standpoint, equations 0.1 and 0.2 are equivalently 
desirable. Either gives a single new postulate beyond Newtonian and quantum 
mechanics. One may cultivate a preference for one or the other of these equations on 
such grounds as "simplicity," but I am writing science, not theology. Operationally, 
(0.2) is to be preferred to (0.1), in that the world contains many examples of 
thennostated systems (for which (0.2) is apparently exact), but no examples of 
isolated systems (for which (0.1) is believed to be correct [4].) Gibbs emphasizes 
that the canonical ensemble is as useful for systems containing few particles as it is 
for systems containing many particles, in contrast to the microcanonical ensemble, 
which is only applicable to many-particle systems. 

Finally, I will remain entirely grateful to the colleagues, students (notably Susan 
Merriam, who read carefully the final draft), and the editorial staff at Springer­
Verlag. Together, they found my typographic and algebraic errors, missing steps in 
proofs, weak homework problems that could be made better, . .. and called these 
deficiencies to my attention. The remaining errors are all mine. 
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itself, cannot be said not to change. To put it another way, the usual argument that 
(0.1) implies (0.2) relies on the assumption that if the energy in a part of an isolated 
system is increased, the energy available for distribution over the remainder of the 
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