

Graduate Texts in Contemporary Physics

Series Editors:

R. Stephen Berry
Joseph L. Birman
Jeffrey W. Lynn
Mark P. Silverman
H. Eugene Stanley
Mikhail Voloshin

Springer-Verlag Berlin Heidelberg GmbH

Graduate Texts in Contemporary Physics

S.T. Ali, J.P. Antoine, and J.P. Gazeau: **Coherent States, Wavelets and Their Generalizations**

A. Auerbach: **Interacting Electrons and Quantum Magnetism**

B. Felsager: **Geometry, Particles, and Fields**

P. Di Francesco, P. Mathieu, and D. Sénéchal: **Conformal Field Theories**

A. Gonis and W.H. Butler: **Multiple Scattering in Solids**

J.H. Hinken: **Superconductor Electronics: Fundamentals and Microwave Applications**

J. Hladík: **Spinors in Physics**

Yu.M. Ivanchenko and A.A. Lisyansky: **Physics of Critical Fluctuations**

M. Kaku: **Introduction to Superstrings and M-Theory, 2nd Edition**

M. Kaku: **Strings, Conformal Fields, and M-Theory, 2nd Edition**

H.V. Klapdor (ed.): **Neutrinos**

J.W. Lynn (ed.): **High-Temperature Superconductivity**

H.J. Metcalf and P. van der Straten: **Laser Cooling and Trapping**

R.N. Mohapatra: **Unification and Supersymmetry: The Frontiers of Quark-Lepton Physics, 2nd Edition**

H. Oberhummer: **Nuclei in the Cosmos**

G.D.J. Phillies: **Elementary Lectures in Statistical Mechanics**

R.E. Prange and S.M. Girvin (eds.): **The Quantum Hall Effect**

B.M. Smirnov: **Clusters and Small Particles: In Gases and Plasmas**

M. Stone: **The Physics of Quantum Fields**

(continued following index)

George D.J. Phillies

Elementary Lectures in Statistical Mechanics

With 51 Illustrations

Springer

George D.J. Phillies
Department of Physics
and Associated Biochemistry Faculty
Worcester Polytechnic Institute
100 Institute Road
Worcester, MA 01605
USA
phillies@wpi.edu

Series Editors

R. Stephen Berry
Department of Chemistry
University of Chicago
Chicago, IL 60637
USA

Mark P. Silverman
Department of Physics
Trinity College
Hartford, CT 06106
USA

Joseph L. Birman
Department of Physics
City College of CUNY
New York, NY 10031
USA

H. Eugene Stanley
Center for Polymer Studies
Physics Department
Boston University
Boston, MA 02215
USA

Jeffrey W. Lynn
Department of Physics
University of Maryland
College Park, MD 20742
USA

Mikhail Voloshin
Theoretical Physics Institute
Tate Laboratory of Physics
University of Minnesota
Minneapolis, MN 55455
USA

Library of Congress Cataloging-in-Publication Data
Phillies, George D.J.

Elementary lectures in statistical mechanics / George D.J. Phillies.
p. cm. — (Graduate texts in contemporary physics)

Includes bibliographical references and index.

ISBN 978-1-4612-7068-3 ISBN 978-1-4612-1264-5 (eBook)

DOI 10.1007/978-1-4612-1264-5

1. Statistical mechanics. I. Title. II. Series.

QC174.8.P53 2000

530.13—dc21

99-42810

Printed on acid-free paper.

© 2000 Springer-Verlag Berlin Heidelberg

Originally published by Springer-Verlag New York Berlin Heidelberg in 2000

Softcover reprint of the hardcover 1st edition 2000

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag Berlin Heidelberg GmbH), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Robert Bruni; manufacturing supervised by Jeffrey Taub.

Photocomposed copy prepared from the author's *TeX* files.

9 8 7 6 5 4 3 2 1

SPIN 10742832

Preface

This volume is based on courses on Statistical Mechanics which I have taught for many years at the Worcester Polytechnic Institute. My objective is to treat classical statistical mechanics and its modern applications, especially interacting particles, correlation functions, and time-dependent phenomena. My development is based primarily on Gibbs's ensemble formulation.

Elementary Lectures in Statistical Mechanics is meant as a (relatively sophisticated) undergraduate or (relatively straightforward) graduate text for physics students. It should also be suitable as a graduate text for physical chemistry students. Physicists may find my treatment of algebraic manipulation to be more explicit than some other volumes. In my experience some of our colleagues are perhaps a bit over-enthusiastic about the ability or tendency of our students to complete gaps in the derivations.

I emphasize a cyclic development of major themes. I could have begun with a fully detailed formal treatment of ensemble mechanics, as found in Gibbs's volume, and then given material realizations. I instead interleave formal discussions with simple concrete models. The models illustrate the formal definitions. The approach here gives students a chance to identify fundamental principles and methods before getting buried in ancillary details.

There are lots of other good books on statistical mechanics. In reading them, I am often staggered by how much some of my colleagues know about statistical mechanics—far more than I do. I am even more staggered by their faith that students can learn that displayed knowledge in the space of a semester or two. I have tried to write a “you really should know much of this” book rather than a “behold my sublime genius and overwhelming knowledge” book. The last three Lectures do

present a real research problem, drawn from my own papers, to convince students that they are now ready to read the primary literature for themselves.

I note two approaches for causing students to learn theory. In the first approach, held by a sufficiently large majority that its supporters oft refer to it as the “only approach,” students are expected to learn primarily by solving problems. In the second approach, students learn primarily by wrestling with the words of the author. Students who respond to the second approach, while interested in seeing worked examples, tend to view homework problems as as obstacle which must be traversed before they can spend time learning the material. If you are a student, be warned!: Many people think they only need to ponder problems rather than working them; few people actually do need to ponder problems rather than working them.

These methods appear to me to represent underlying differences in how their supporters think. I myself learn from the latter method, but hope I have presented enough problems to satisfy students who need to work problems. The problems have a wide range of difficulty. The easiest problem requires a few lines of calculation; the final problem of the final Lecture has consumed hundreds of man-years of research without being solved. I also use homework problems to introduce significant results not seen elsewhere in the text, so a perusal of unworked problems may prove worthwhile. The concept of naming problems is due to Mr. Mark Swanson, who initially advocated the procedure as a method for tagging rules in large complex games.

On a parallel line, some students say “tell us what is true, not what is not true,” while others find the mathematician’s emphasis on elaborated counterexamples to be critical in sharpening their thinking about what a definition means. The mathematicians appear to have the better of this argument.

At a few points my development differs from some other modern works:

First, the material is arranged as “Lectures,” not “Chapters.” While some of the early Lectures have grown in writing, an hour-and-a-half presentation or two will cover almost any Lecture. The Lectures are grouped into five parts, covering (I) separable classical systems, (II) separable quantum systems, (III) systems of interacting particles and cluster expansions, (IV) correlation functions and dynamics, and (V) a research problem from the literature. Lectures are interleaved with “Asides.” The Asides ease the passage between Lectures and supply material on the real foundations of statistical mechanics.

Second, I am a firm believer in dotting i’s and crossing t’s. For example, note Aside C and its treatment of the so-called Gibbs Paradox, which Gibbs did not view as involving a paradox. Some instructors mix results from the canonical and microcanonical ensembles without discussing logical consistency. I have tried, probably unsuccessfully, to avoid inconsistency here.

Third, in developing most of the material presented here, quantum mechanics has been reduced to its historically subordinate role. Most research in statistical mechanics of physical systems does not use quantum theory directly. Admittedly, if one wishes to compute the forces within a pair or cluster of atoms, quantum mechanics is indispensable. Similarly, to calculate the allowed vibration energies of a molecular system, one may well need quantum mechanics. However, interference

effects are seldom obvious except at low temperatures. The correct counting of states of indistinguishable particles at normal densities and room temperature was obtained by Gibbs in the last century using a purely classical argument. In cold dense systems, quantum corrections can become large. Quantum effects are treated in Part II.

Fourth, I adhere rigorously to Gibbs [1] rather than Boltzmann [2] or Schroedinger [3] in asserting the primacy of the canonical over the microcanonical ensemble, not the other way around. I believe that this choice maintains pedagogical simplicity and keeps a direct connection between theory and reality.

Had I begun with the microcanonical ensemble, I would necessarily have begun with the elaborate demonstration that the microcanonical statistical weight for the whole of a large isolated physical system

$$W_j = 1/A \quad (0.1)$$

implies the canonical statistical weight

$$W_j = \exp(-\beta E_j)/Q \quad (0.2)$$

for a small part of the large isolated system. Real systems of fixed temperature are generally not small parts of equilibrium systems which have fixed energy, so this derivation is unphysical. This derivation also sacrifices the major advantage which Gibbs proved for his canonical ensemble approach, namely that his canonical ensemble is equally valid for small and large systems, while the transition from (0.1) to (0.2) is only useful for large systems.

From a logical-theoretical standpoint, equations 0.1 and 0.2 are equivalently desirable. Either gives a single new postulate beyond Newtonian and quantum mechanics. One may cultivate a preference for one or the other of these equations on such grounds as “simplicity,” but I am writing science, not theology. Operationally, (0.2) is to be preferred to (0.1), in that the world contains many examples of thermostated systems (for which (0.2) is apparently exact), but no examples of isolated systems (for which (0.1) is believed to be correct [4].) Gibbs emphasizes that the canonical ensemble is as useful for systems containing few particles as it is for systems containing many particles, in contrast to the microcanonical ensemble, which is only applicable to many-particle systems.

Finally, I will remain entirely grateful to the colleagues, students (notably Susan Merriam, who read carefully the final draft), and the editorial staff at Springer-Verlag. Together, they found my typographic and algebraic errors, missing steps in proofs, weak homework problems that could be made better, . . . and called these deficiencies to my attention. The remaining errors are all mine.

References

[1] J. W. Gibbs, *Elementary Principles in Statistical Mechanics*, Yale University Press, New Haven, CT (1902).

- [2] L. Boltzmann, *Lectures in Gas Theory*, Leipzig (1896), translated in S. G. Brush, *Kinetic Theory*, Oxford University Press, Oxford, (1965).
- [3] E. Schrödinger, *Statistical Thermodynamics*, Cambridge University Press, Cambridge, (1952).
- [4] It is sometimes asserted that—since no process creates or destroys energy—the Universe as a whole forms an element of a microcanonical ensemble. However, the best estimate—when I wrote this footnote—is that the Universe is open, in the cosmological sense, and therefore infinite in extent. If the total energy content of the Universe be infinite, the assertion that the Universe's total energy content is not changed by any process is not significant. The energy content of an infinite universe, being infinite itself, cannot be said not to change. To put it another way, the usual argument that (0.1) implies (0.2) relies on the assumption that if the energy in a part of an isolated system is increased, the energy available for distribution over the remainder of the system must have been reduced. In a finite system, this assumption is an obvious consequence of energy conservation. In an infinite isolated system, increasing the amount of energy in a small part of the system has no effect on the amount of energy available to be distributed over the remainder of the system, so in an infinite system the usual arguments for proceeding from (0.1) to (0.2) are not valid.

George D. J. Phillies
Worcester, Massachusetts
June, 1999

Contents

Preface	v
References	vii
I Fundamentals: Separable Classical Systems	1
Lecture 1. Introduction	3
1.1 Historical Perspective	4
1.2 Basic Principles	6
1.3 Author's Self-Defense	8
1.4 Other Readings	9
References	10
Lecture 2. Averaging and Statistics	11
2.1 Examples of Averages	12
2.2 Formal Averages	16
2.3 Probability and Statistical Weights	18
2.4 Meaning and Characterization of Statistical Weights	22
2.5 Ideal Time and Ensemble Averages	23
2.6 Summary	25
Problems	25
References	27

Lecture 3. Ensembles: Fundamental Principles of Statistical Mechanics	28
3.1 Ensembles	28
3.2 The Canonical Ensemble	30
3.3 Other Ensembles	32
3.4 Notation and Terminology: Phase Space	36
3.5 Summary	37
Problems	37
References	38
Lecture 4. The One-Atom Ideal Gas	39
4.1 The Classical One-Atom Ensemble	39
4.2 The Average Energy	42
4.3 Mean-Square Energy	43
4.4 The Maxwell–Boltzmann Distribution	43
4.5 Reduced Distribution Functions	46
4.6 Density of States	48
4.7 Canonical and Representative Ensembles	49
4.8 Summary	51
Problems	51
References	53
Aside A. The Two-Atom Ideal Gas	55
A.1 Setting Up the Problem	55
A.2 Average Energy	57
A.3 Summary	58
Problems	58
Lecture 5. N-Atom Ideal Gas	59
5.1 Ensemble Average for N -Atom Systems	59
5.2 Ensemble Averages of E and E^2	62
5.3 Fluctuations and Measurements in Large Systems	64
5.4 Potential Energy Fluctuations	73
5.5 Counting States	74
5.6 Summary	78
Problems	78
References	79
Lecture 6. Pressure of an Ideal Gas	80
6.1 P from a Canonical Ensemble Average	80
6.2 P from the Partition Function	83
6.3 P from the Kinetic Theory of Gases	84
6.4 Remarks	87
Problems	88
References	89

Aside B. How Do Thermometers Work?—The Polythermal Ensemble	90
B.1 Introduction	90
B.2 The Polythermal Ensemble	92
B.3 Discussion	95
Problems	96
References	96
Lecture 7. Formal Manipulations of the Partition Function	98
7.1 The Equipartition Theorem	98
7.2 First Generalized Equipartition Theorem	101
7.3 Second Generalized Equipartition Theorem	102
7.4 Additional Tests; Clarification of the Equipartition Theorems	104
7.5 Parametric Derivatives of the Ensemble Average	107
7.6 Summary	108
Problems	109
References	109
Aside C. Gibbs's Derivation of $Q = \exp(-\beta A)$	111
References	114
Lecture 8. Entropy	115
8.1 The Gibbs Form for the Entropy	116
8.2 Special Cases	118
8.3 Discussion	121
Problems	122
References	122
Lecture 9. Open Systems; Grand Canonical Ensemble	123
9.1 The Grand Canonical Ensemble	124
9.2 Fluctuations in the Grand Canonical Ensemble	133
9.3 Discussion	136
Problems	136
References	137
II Separable Quantum Systems	139
Lecture 10. The Diatomic Gas and Other Separable Quantum Systems	141
10.1 Partition Functions for Separable Systems	142
10.2 Classical Diatomic Molecules	144
10.3 Quantization of Rotational and Vibrational Modes	145
10.4 Spin Systems	150
10.5 Summary	153
Problems	154
References	156

Lecture 11. Crystalline Solids	157
11.1 Classical Model of a Solid	158
11.2 Einstein Model	159
11.3 Debye Model	160
11.4 Summary	167
Problems	167
References	168
Aside D. Quantum Mechanics	169
D.1 Basic Principles of Quantum Mechanics	169
D.2 Summary	177
Problems	178
References	178
Lecture 12. Formal Quantum Statistical Mechanics	180
12.1 Choice of Basis Vectors	180
12.2 Replacement of Sums over All States with Sums over Eigenstates	183
12.3 Quantum Effects on Classical Integrals	186
12.4 Summary	188
Problems	188
References	189
Lecture 13. Quantum Statistics	190
13.1 Introduction	190
13.2 Particles Whose Number Is Conserved	191
13.3 Noninteracting Fermi-Dirac Particles	195
13.4 Photons	197
13.5 Historical Aside: What Did Planck Do?	201
13.6 Low-Density Limit	205
Problems	205
References	206
Aside E. Kirkwood-Wigner Theorem	208
E.1 Momentum Eigenstate Expansion	208
E.2 Discussion	213
Problems	214
References	214
Lecture 14. Chemical Equilibria	215
14.1 Conditions for Chemical Equilibrium	215
14.2 Equilibrium Constants of Dilute Species from Partition Functions	220
14.3 Discussion	222
Problems	222

References	222
III Interacting Particles and Cluster Expansions	223
Lecture 15. Interacting Particles	225
15.1 Potential Energies; Simple Fluids	226
15.2 Simple Reductions; Convergence	229
15.3 Discussion	232
Problems	232
References	232
Lecture 16. Cluster Expansions	233
16.1 Search for an Approach	233
16.2 An Approximant	236
16.3 Flaws of the Approximant	237
16.4 Approximant as a Motivator of Better Approaches	238
Problems	239
References	239
Lecture 17. Ξ via the Grand Canonical Ensemble	240
17.1 Ξ and the Density	240
17.2 Expansion for P in Powers of z or ρ	241
17.3 Graphical Notation	244
17.4 The Pressure	247
17.5 Summary	247
Problems	248
References	249
Lecture 18. Evaluating Cluster Integrals	250
18.1 B_2 ; Special Cases	250
18.2 More General Techniques	253
18.3 g -Bonds	259
18.4 The Law of Corresponding States	260
18.5 Summary	261
Problems	262
References	263
Lecture 19. Distribution Functions	264
19.1 Motivation for Distribution Functions	264
19.2 Definition of the Distribution Function	267
19.3 Applications of Distribution Functions	270
19.4 Remarks	273
19.5 Summary	274
Problems	274

Lecture 20. More Distribution Functions	276
20.1 Introduction	276
20.2 Chemical Potential	276
20.3 Charging Processes	278
20.4 Summary	281
Problems	281
References	281
Lecture 21. Electrolyte Solutions, Plasmas, and Screening	282
21.1 Introduction	282
21.2 The Debye–Hückel Model	282
21.3 Discussion	288
Problems	288
References	288
IV Correlation Functions and Dynamics	289
Lecture 22. Correlation Functions	291
22.1 Introduction; Correlation Functions	291
22.2 The Density Operator: Examples of Static Correlation Functions	293
22.3 Evaluation of Correlation Functions via Symmetry: Translational Invariance	295
22.4 Correlation Functions of Vectors and Pseudovectors; Other Symmetries	298
22.5 Discussion and Summary	300
Problems	300
References	301
Lecture 23. Stability of the Canonical Ensemble	302
23.1 Introduction	302
23.2 Time Evolution: Temporal Stability of the Canonical Ensemble	304
23.3 Application of the Canonical Ensemble Stability Theorem	311
23.4 Time Correlation Functions	315
23.5 Discussion	317
Problems	318
References	318
Aside F. The Central Limit Theorem	320
F.1 Derivation of the Central Limit Theorem	322
F.2 Implications of the Central Limit Theorem	325
F.3 Summary	326
Problems	326
References	327

Lecture 24. The Langevin Equation	328
24.1 The Langevin Model for Brownian Motion	328
24.2 A Fluctuation–Dissipation Theorem on the Langevin Equation	330
24.3 Mean-Square Displacement of a Brownian Particle	332
24.4 Cross Correlation of Successive Langevin Steps	334
24.5 Application of the Central Limit Theorem to the Langevin Model	335
24.6 Summary	337
Problems	337
References	338
Lecture 25. The Langevin Model and Diffusion	339
25.1 Necessity of the Assumptions Resulting in the Langevin Model	339
25.2 The Einstein Diffusion Equation: A Macroscopic Result	342
25.3 Diffusion in Concentrated Solutions	343
25.4 Summary	345
Problems	346
References	346
Lecture 26. Projection Operators and the Mori–Zwanzig Formalism	347
26.1 Time Evolution of Phase Points via the Liouville Operator	348
26.2 Projection Operators	350
26.3 The Mori–Zwanzig Formalism	354
26.4 Asides on the Mori–Zwanzig Formalism	359
Problems	363
References	363
Lecture 27. Linear Response Theory	365
27.1 Introduction	365
27.2 Linear Response Theory	365
27.3 Electrical Conductivity	368
27.4 Discussion	371
Problems	371
References	371
V A Research Problem	373
Aside G. Scattering of Light, Neutrons, X-Rays, and Other Radiation	375
G.1 Introduction	375
G.2 Scattering Apparatus; Properties of Light	376
G.3 Time Correlation Functions	382
Problems	386
References	386

Lecture 28. Diffusion of Interacting Particles	388
28.1 Why Should We Care About this Research Problem?	389
28.2 What Shall We Calculate?	389
28.3 Model for Particle Dynamics	391
28.4 First Cumulant for $g^{(1)}(k, t)$	394
28.5 Summary	398
Problems	399
References	399
Lecture 29. Interacting Particle Effects	401
29.1 Reduction to Radial Distribution Functions	402
29.2 Numerical Values for K_1 and K_{1s}	405
29.3 Discussion	409
Problems	411
References	412
Lecture 30. Hidden Correlations	413
30.1 Model-Independent Results	413
30.2 Evaluation of the Derivatives	415
30.3 Resolution of the Anomaly	418
30.4 Discussion	419
Problems	421
References	422
Index	423