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To the memory of my father



Foreword

It is a special pleasure for me to write this foreword for a remarkable book by a
remarkable author. Marco Pettini is a deep thinker, who has spent many years
probing the foundations of Hamiltonian chaos and statistical mechanics, in
particular phase transitions, from the point of view of geometry and topology.

It is in particular the quality of mind of the author and his deep physical, as
well as mathematical insights which make this book so special and inspiring.
It is a “must” for those who want to venture into a new approach to old
problems or want to use new tools for new problems.

Although topology has penetrated a number of fields of physics, a broad
participation of topology in the clarification and progress of fundamental prob-
lems in the above-mentioned fields has been lacking. The new perspectives
topology gives to the above-mentioned problems are bound to help in their
clarification and to spread to other fields of science.

The sparsity of geometric thinking and of its use to solve fundamental
problems, when compared with purely analytical methods in physics, could
be relieved and made highly productive using the material discussed in this
book.

It is unavoidable that the physicist reader may have then to learn some
new mathematics and be challenged to a new way of thinking, but with the
author as a guide, he is assured of the best help in achieving this that is
presently available.

The major mathematical tool used by the author to tackle the problems
mentioned in the title is Riemannian differential geometry, the same as is used
in general relativity. This way a geometric based theory of Hamiltonian chaos
and thermodynamic phase transitions is pursued. Moreover, a connection is
made between the origin of Hamiltonian chaos and phase transitions. In this
approach the origin of both is related to curvature fluctuations of the phase
space of the system.

I note that for the mathematically inclined reader the use of a coordinate-
dependent formulation based on Riemannian geometry may be less satis-
factory than for the physicist reader and might be considered a lack of
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VIII Foreword

mathematical elegance. After all, geometry’s and topology’s virtue is a global
approach to the structure of manifolds and their properties. However, from a
physicist’s point of view one might invoke Boltzmann’s dictum that “elegance
is for tailors.”

The above-mentioned curvature variations in the Riemannian description
of phase space lead then, on the one hand, to Hamiltonian chaos through a
parametric instability mechanism. On the other hand, when they are also due
to the additional cause of a strongly and suddenly changing complex topology,
they are also closely related to phase transitions. In fact, numerical studies
show that a phase transition is invariably marked by a peak in the curvature
fluctuations and by “cuspy” energy dependencies of Lyapunov exponents.

Thus these catastrophic events, due to the highly irregular, “bumpy” land-
scape of phase space, trigger on the deeper level of the topology of phase space
itself the singularities occurring in the usual description of phase transitions
on a higher level.

A remarkable achievement is the proof of two theorems, giving, for a large
class of Hamiltonian systems, a necessary topological condition for a first- or
second-order phase transition to take place. Roughly speaking, these theorems
say, “no topology change in phase space, no phase transition.” However, there
is at present no theorem that gives a sufficient topological condition for the
occurrence of a phase transition.

This may be related to the fact that not every topological transition in
phase space leads to a phase transition, so that the question arises, what
kinds of topological transitions are related to phase transitions and what is,
from a topological point of view, the difference between various types of phase
transitions?

Clearly the elucidation of these questions would deepen our basic under-
standing of two of the most striking phenomena in nature: that of chaos and
that of phase transitions.

It is my conviction that this book makes a courageous attempt to clarify
these fundamental phenomena in a new way.

Therefore, I highly recommend this refreshing and very original book not
only for its factual content but also for the privilege one has in sharing the
author’s deep insights and new approaches and results to some unsolved prob-
lems in physics. I have no doubt that the reader will find this book highly
stimulating and rewarding.

E. G. D. Cohen, professor
The Rockefeller University

New York, July 2006



Preface

Phase transitions are among the most impressive phenomena occurring in
nature. They are an example of emergent behavior, i.e., of collective properties
having no direct counterpart in the dynamics or structure of individual atoms
or molecules: to give a familiar example, the molecules of ice and liquid water
are identical and interact with the same laws of force, despite their remarkably
different macroscopic properties.

That these macroscopic properties must have some relation to microscopic
dynamics seems obvious, for example the molecules in a drop of water are free
to move everywhere in the drop, in contrast to what happens in a crystal
of ice.

However, according to a widespread point of view, when a large number of
particles is involved, since we are unable to follow all their individual histories,
we are compelled to get rid of dynamics and to replace it by a statistical
description. For a long time only a marginal role has been thus attributed
to microscopic dynamics: the large number of particles and our ignorance of
their initial conditions have been considered enough to provide a solid ground
to statistical mechanics.

More recently, much attention has been paid to another source of unpre-
dictability, which is intrinsic to the dynamics itself: deterministic chaos, and,
in particular, Hamiltonian chaos.

The present book is a monograph committed to a synthesis of two basic
topics in physics: Hamiltonian dynamics, with all its richness unveiled since
the famous numerical experiment of Fermi and coworkers at Los Alamos, and
statistical mechanics, mainly for what concerns phase transition phenomena
in systems described by realistic interatomic or intermolecular forces.

The novelty of the theoretical proposal put forward in this monograph
stems from a well-known fact: the natural motions of a Hamiltonian system
are geodesics of appropriately defined Riemannian manifolds. Whence the
possibility of deepening our understanding of the microscopic dynamical
foundations of macroscopic physics of many-particle systems. In fact, the
geometrization of dynamics allows questions like, can we “read” in the
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geometry of these mechanical manifolds something relevant to the under-
standing of basic properties of the dynamics? A major issue is undoubtely
to understand the origin of the chaotic instability of dynamics. The first part
of the book contains what we can call the beginning of a Riemannian theory of
Hamiltonian chaos, which works strikingly well when applied to models (like
the Fermi–Pasta–Ulam model) fulfilling the simplifying hypotheses introduced
to analytically compute the largest Lyapunov exponent. In the spirit of the
Springer Series in Interdisciplinary Applied Mathematics, I have made explicit
in what direction further developments of the theory should go. The second
part of the book stems from another question, again rooted in the Riemannian
theory of chaos: what happens to these mechanical manifolds when a Hamil-
tonian system undergoes a phase transition? and how can we “geometrically
read” the occurrence of a phase transition? It is at this point that topol-
ogy comes into play, and, roughly speaking, considering certain submanifolds
of configuration space, the answer is that necessarily a phase transition can
occur only at a point where the topology of these submanifolds undergoes a
transition, and this is true at least for a large class of systems.

The presentation of the book follows the logic of the historical deve-
lopment of a successful ten-year research program that I carried out with
the help of several collaborators. The many open points are at the same time
highlighted, giving the material presented more the form of an intermediate
stage of publication than the form of a monograph on a mature and already
concluded research program. And it is just this characteristic that, I hope, will
make this book attractive for those, mathematicians or physicists, who might
be interested in contributing to the general theoretical framework, its physical
applications, or the mathematics necessary in the context of applications.

The mathematics involved is not used to clean up or rephrase already
existing results, rather it is constructively used to gain insight. The language of
differential geometry and differential topology is not familiar to the majority of
physicists and has almost never entered statistical mechanics, a circumstance
that might induce skepticism and/or could be discouraging.

Thus, in order to make this book accessible to as wide a readership as
possible, including both mathematicians and physicists, and since it makes
use of concepts that might be not known to everyone, the following format
has been chosen.

The first part of the book is aimed at a reader who is familiar with the
basics of Riemannian geometry, for example at the level of a course in gene-
ral relativity. As to the second part, a knowledge of Morse theory and de
Rham’s cohomology theory at an elementary level is assumed. However, for
those physicists who are not familiar with these branches of mathematics, I
have provided in appendices the main points that are needed to follow the
exposition. Similarly, I assume that the reader is familiar with the basics of
Hamiltonian dynamical systems (theory and phenomenology) and statistical
mechanics, but I have summarized in Chapter 2 the main concepts needed
throughout the book. In all cases references to the literature for the details
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are made. I hope that a reader familiar with the basic mathematical tools and
with the basic physical meaning of the topics treated will be able to read the
book straightforwardly.

I have made a special effort to emphasize logical coherence and the excel-
lent consistency already attained by the ensemble of results presented in the
book. Nevertheless, as mentioned above, these results constitute the starting
of a new theory rather than its completion. This is the reason why this mono-
graph has no pretence at mathematical rigor (with the exception of Chapter
9), nor at mathematical elegance (the geometrization of Hamiltonian flows,
their integrability and instability, in Chapters 3, 4, and 5, respectively, is writ-
ten in a coordinate-dependent style in view of applications and thus of explicit
computations). Nevertheless, I hope that this will not prevent mathematicians
from understanding the meaning of what has been achieved in applying geo-
metrical and topological methods to the study of the relationship between
dynamical systems and statistical mechanics, with special emphasis on phase
transitions. In fact, I would like this monograph to allow the reader, mathe-
matician or physicist, to familiarize herself or himself with this new field and
to stimulate new developments and contributions to the many points that are
still open and explicitly evidenced throughout the text.

The theoretical scenario depicted in this book is based on the outcomes
of a research program inspired and coordinated by the author. However, this
research program has been successfully developed only thanks to the collective
effort of several collaborators and friends. Therefore, among the most senior
of them, my warmest thanks go to Monica Cerruti-Sola, whose continual and
precious collaboration during fifteen years has been of invaluable help. My
warmest acknowledgments also go to Giulio Pettini for having contributed
during a crucial period. I have been honored by the active interest in this
research program demonstrated by E.G.D. Cohen and Raoul Gatto, with
whom stimulating and fruitful collaborations were carried on during several
years.

At the very beginning of my interest in the connection between Hamil-
tonian dynamics and statistical mechanics, there was a collaboration, a long
time ago, with Roberto Livi, Antonio Politi, Stefano Ruffo, and Angelo
Vulpiani, friends and colleagues with whom useful discussions and scientific
interchanges have never ceased.

I had the chance to work with several gifted and very brilliant PhD stu-
dents. Among them, my warmest acknowledgments go to Lapo Casetti, who
has creatively, brilliantly, and courageously contributed to most of the fun-
damental steps of this research program since its very beginning; as well, my
warmest acknowledgments go to Roberto Franzosi, whose brilliant, creative,
and continual collaboration during the last ten years has been of invaluable
help in making crucial leaps forward in the topological theory of phase tran-
sitions.

It is with a feeling of deepest sorrow that my memory goes to another
student and dear friend of mine, Lando Caiani, who died while he was at
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SISSA-ISAS in Trieste for his PhD. Lando was an outstanding, very promising,
and cultivated young physicist.

A precious contribution to the Riemannian approach to the study of Hamil-
tonian chaos and to the early developments of the topological approach to
phase transitions was given by Cecilia Clementi, whose intelligence and pro-
ductivity were nothing but absolutely impressive.

It is a pleasure to acknowledge the precious help of Lionel Spinelli in
working out rigorous results on the topological theory of phase transitions, of
Guglielmo Iacomelli, with whom we worked on extensions of these methods
to quantum systems, and of Guido Ciraolo, with whom we worked on the
Riemannian theory of Hamiltonian chaos of low-dimensional systems.

A timely and very fruitful collaboration with Luca Angelani, Giancarlo
Ruocco, and Francesco Zamponi is warmly acknowledged.

I have profited from many helpful discussions about mathematics with
Gabriele Vezzosi, whose friendly and continuous interest for this work has
been an effective encouragement.

I warmly thank another friend, A.M. Vinogradov, for many illuminating
discussions on several topics in mathematics.

During many years, I have profited from useful suggestions,
remarks, comments by, and discussions with V.I. Arnold, E. van Bejieren,
G. Benettin, S. Caracciolo, P. Cipriani, P. Collet, E. Del Giudice, R. Dorfman,
J.P. Eckmann, Y. Elskens, D. Escande, L. Galgani, P. Giaquinta, C. Giardinà,
A. Giorgilli, T. Kambe, M. Kastner, J. Lebowitz, A. Lichtenberg, R. Lima,
C. Liverani, H. Posch, M. Rasetti, D. Ruelle, S. Schreiber, R. Schilling,
Ya. Sinai, A. Tenenbaum, S. Vaienti, M. Vittot; my thanks to all of them.

My scientific activity has been supported by the Osservatorio Astrofisico
di Arcetri, Firenze, Italy (now part of the Istituto Nazionale di Astrofisica,
I.N.A.F.). Its former director, Franco Pacini, is warmly acknowledged for his
collaboration and support. For many years, this scientific activity has been
financially supported by the Istituto Nazionale di Fisica Nucleare (I.N.F.N.),
which is here warmly acknowledged.

While writing this book I have been supported in many ways by my beloved
children Eleonora and Leonardo.

Last, but not least, this book would have not seen the light of day without
the invaluable help of Massimo Fagioli, psychiatrist and eminent scientist,
who, having unveiled fundamental dynamical processes of the unconscious
mind, in Rome has been conducting, since 32 years, the so-called Analisi
Collettiva, a very large group in which an emergent phenomenon (as in the
case of phase transitions!), due to the unconscious interactions among people,
has a strong healing power. In this way Massimo Fagioli drew me out of what
T.S. Eliot would have called a “waste land,” where I was wandering after my
father’s passing away.

Florence, September 2006 Marco Pettini
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