
Introduction to Parallel
Computing

W. P. Petersen
Seminar for Applied Mathematics

Department of Mathematics, ETHZ, Zurich
wpp@math.ethz.ch

P. Arbenz
Institute for Scientific Computing

Department Informatik, ETHZ, Zurich
arbenz@inf.ethz.ch

1



3
Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in
Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© Oxford University Press 2004

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2004

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

A catalogue record for this title is available from the British Library

Library of Congress Cataloging in Publication Data
(Data available)

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India
Printed in Great Britain

on acid-free paper by
Biddles Ltd., King’s Lynn, Norfolk

ISBN 0 19 851576 6 (hbk)
0 19 851577 4 (pbk)

10 9 8 7 6 5 4 3 2 1



CONTENTS

List of Figures xv
List of Tables xvii

1 BASIC ISSUES 1
1.1 Memory 1
1.2 Memory systems 5

1.2.1 Cache designs 5
1.2.2 Pipelines, instruction scheduling, and loop unrolling 8

1.3 Multiple processors and processes 15
1.4 Networks 15

2 APPLICATIONS 18
2.1 Linear algebra 18
2.2 LAPACK and the BLAS 21

2.2.1 Typical performance numbers for the BLAS 22
2.2.2 Solving systems of equations with LAPACK 23

2.3 Linear algebra: sparse matrices, iterative methods 28
2.3.1 Stationary iterations 29
2.3.2 Jacobi iteration 30
2.3.3 Gauss–Seidel (GS) iteration 31
2.3.4 Successive and symmetric successive overrelaxation 31
2.3.5 Krylov subspace methods 34
2.3.6 The generalized minimal residual method (GMRES) 34
2.3.7 The conjugate gradient (CG) method 36
2.3.8 Parallelization 39
2.3.9 The sparse matrix vector product 39
2.3.10 Preconditioning and parallel preconditioning 42

2.4 Fast Fourier Transform (FFT) 49
2.4.1 Symmetries 55

2.5 Monte Carlo (MC) methods 57
2.5.1 Random numbers and independent streams 58
2.5.2 Uniform distributions 60
2.5.3 Non-uniform distributions 64



x CONTENTS

3 SIMD, SINGLE INSTRUCTION MULTIPLE DATA 85
3.1 Introduction 85
3.2 Data dependencies and loop unrolling 86

3.2.1 Pipelining and segmentation 89
3.2.2 More about dependencies, scatter/gather operations 91
3.2.3 Cray SV-1 hardware 92
3.2.4 Long memory latencies and short vector lengths 96
3.2.5 Pentium 4 and Motorola G-4 architectures 97
3.2.6 Pentium 4 architecture 97
3.2.7 Motorola G-4 architecture 101
3.2.8 Branching and conditional execution 102

3.3 Reduction operations, searching 105
3.4 Some basic linear algebra examples 106

3.4.1 Matrix multiply 106
3.4.2 SGEFA: The Linpack benchmark 107

3.5 Recurrence formulae, polynomial evaluation 110
3.5.1 Polynomial evaluation 110
3.5.2 A single tridiagonal system 112
3.5.3 Solving tridiagonal systems by cyclic reduction. 114
3.5.4 Another example of non-unit strides to achieve

parallelism 117
3.5.5 Some examples from Intel SSE and Motorola Altivec 122
3.5.6 SDOT on G-4 123
3.5.7 ISAMAX on Intel using SSE 124

3.6 FFT on SSE and Altivec 126

4 SHARED MEMORY PARALLELISM 136
4.1 Introduction 136
4.2 HP9000 Superdome machine 136
4.3 Cray X1 machine 137
4.4 NEC SX-6 machine 139
4.5 OpenMP standard 140
4.6 Shared memory versions of the BLAS and LAPACK 141
4.7 Basic operations with vectors 142

4.7.1 Basic vector operations with OpenMP 143
4.8 OpenMP matrix vector multiplication 146

4.8.1 The matrix–vector multiplication with OpenMP 147
4.8.2 Shared memory version of SGEFA 149
4.8.3 Shared memory version of FFT 151

4.9 Overview of OpenMP commands 152
4.10 Using Libraries 153



CONTENTS xi

5 MIMD, MULTIPLE INSTRUCTION, MULTIPLE DATA 156
5.1 MPI commands and examples 158
5.2 Matrix and vector operations with PBLAS and BLACS 161
5.3 Distribution of vectors 165

5.3.1 Cyclic vector distribution 165
5.3.2 Block distribution of vectors 168
5.3.3 Block–cyclic distribution of vectors 169

5.4 Distribution of matrices 170
5.4.1 Two-dimensional block–cyclic matrix distribution 170

5.5 Basic operations with vectors 171
5.6 Matrix–vector multiply revisited 172

5.6.1 Matrix–vector multiplication with MPI 172
5.6.2 Matrix–vector multiply with PBLAS 173

5.7 ScaLAPACK 177
5.8 MPI two-dimensional FFT example 180
5.9 MPI three-dimensional FFT example 184
5.10 MPI Monte Carlo (MC) integration example 187
5.11 PETSc 190

5.11.1 Matrices and vectors 191
5.11.2 Krylov subspace methods and preconditioners 193

5.12 Some numerical experiments with a PETSc code 194

APPENDIX A SSE INTRINSICS FOR FLOATING POINT 201
A.1 Conventions and notation 201
A.2 Boolean and logical intrinsics 201
A.3 Load/store operation intrinsics 202
A.4 Vector comparisons 205
A.5 Low order scalar in vector comparisons 206
A.6 Integer valued low order scalar in vector comparisons 206
A.7 Integer/floating point vector conversions 206
A.8 Arithmetic function intrinsics 207

APPENDIX B ALTIVEC INTRINSICS FOR FLOATING
POINT 211

B.1 Mask generating vector comparisons 211
B.2 Conversion, utility, and approximation functions 212
B.3 Vector logical operations and permutations 213
B.4 Load and store operations 214
B.5 Full precision arithmetic functions on vector operands 215
B.6 Collective comparisons 216



xii CONTENTS

APPENDIX C OPENMP COMMANDS 218

APPENDIX D SUMMARY OF MPI COMMANDS 220
D.1 Point to point commands 220
D.2 Collective communications 226
D.3 Timers, initialization, and miscellaneous 234

APPENDIX E FORTRAN AND C COMMUNICATION 235

APPENDIX F GLOSSARY OF TERMS 240

APPENDIX G NOTATIONS AND SYMBOLS 245

References 246
Index 255



LIST OF FIGURES

1.1 Intel microprocessor transistor populations since 1972. 2
1.2 Linpack benchmark optimal performance tests. 2
1.3 Memory versus CPU performance. 3
1.4 Generic machine with cache memory. 4
1.5 Caches and associativity. 5
1.6 Data address in set associative cache memory. 7
1.7 Pipelining: a pipe filled with marbles. 9
1.8 Pre-fetching 2 data one loop iteration ahead (assumes 2|n). 11
1.9 Aligning templates of instructions generated by unrolling loops. 13
1.10 Aligning templates and hiding memory latencies by pre-fetching data. 13
1.11 Ω-network. 15
1.12 Ω-network switches. 16
1.13 Two-dimensional nearest neighbor connected torus. 17
2.1 Gaussian elimination of an M ×N matrix based on Level 2 BLAS

as implemented in the LAPACK routine dgetrf. 24
2.2 Block Gaussian elimination. 26
2.3 The main loop in the LAPACK routine dgetrf, which is

functionally equivalent to dgefa from LINPACK. 27
2.4 Stationary iteration for solving Ax = b with preconditioner M . 33
2.5 The preconditioned GMRES(m) algorithm. 37
2.6 The preconditioned conjugate gradient algorithm. 38
2.7 Sparse matrix–vector multiplication y = Ax with the matrix A

stored in the CSR format. 40
2.8 Sparse matrix with band-like nonzero structure row-wise block

distributed on six processors. 41
2.9 Sparse matrix–vector multiplication y = ATx with the matrix A

stored in the CSR format. 42
2.10 9×9 grid and sparsity pattern of the corresponding Poisson matrix

if grid points are numbered in lexicographic order. 44
2.11 9×9 grid and sparsity pattern of the corresponding Poisson matrix

if grid points are numbered in checkerboard (red-black) ordering. 44
2.12 9×9 grid and sparsity pattern of the corresponding Poisson matrix

if grid points are arranged in checkerboard (red-black) ordering. 45
2.13 Overlapping domain decomposition. 46
2.14 The incomplete Cholesky factorization with zero fill-in. 48
2.15 Graphical argument why parallel RNGs should generate parallel

streams. 63



xiv LIST OF FIGURES

2.16 Timings for Box–Muller method vs. polar method for generating
univariate normals. 67

2.17 AR method. 68
2.18 Polar method for normal random variates. 70
2.19 Box–Muller vs. Ziggurat method. 72
2.20 Timings on NEC SX-4 for uniform interior sampling of an n-sphere. 74
2.21 Simulated two-dimensional Brownian motion. 79
2.22 Convergence of the optimal control process. 80
3.1 Four-stage multiply pipeline: C = A ∗B. 90
3.2 Scatter and gather operations. 91
3.3 Scatter operation with a directive telling the C compiler to ignore

any apparent vector dependencies. 91
3.4 Cray SV-1 CPU diagram. 93
3.5 saxpy operation by SIMD. 94
3.6 Long memory latency vector computation. 96
3.7 Four-stage multiply pipeline: C = A ∗B with out-of-order

instruction issue. 98
3.8 Another way of looking at Figure 3.7. 99
3.9 Block diagram of Intel Pentium 4 pipelined instruction execution

unit. 100
3.10 Port structure of Intel Pentium 4 out-of-order instruction core. 100
3.11 High level overview of the Motorola G-4 structure, including the

Altivec technology. 101
3.12 Branch processing by merging results. 102
3.13 Branch prediction best when e(x) > 0. 104
3.14 Branch prediction best if e(x) ≤ 0. 104
3.15 Simple parallel version of SGEFA. 108
3.16 Times for cyclic reduction vs. the recursive procedure. 115
3.17 In-place, self-sorting FFT. 120
3.18 Double “bug” for in-place, self-sorting FFT. 121
3.19 Data misalignment in vector reads. 123
3.20 Workspace version of self-sorting FFT. 127
3.21 Decimation in time computational “bug”. 127
3.22 Complex arithmetic for d = wk(a− b) on SSE and Altivec. 128
3.23 Intrinsics, in-place (non-unit stride), and generic FFT. Ito: 1.7 GHz

Pentium 4 130
3.24 Intrinsics, in-place (non-unit stride), and generic FFT. Ogdoad:

1.25 GHz Power Mac G-4. 133
4.1 One cell of the HP9000 Superdome. 136
4.2 Crossbar interconnect architecture of the HP9000 Superdome. 137
4.3 Pallas EFF BW benchmark. 137
4.4 EFF BW benchmark on Stardust. 138
4.5 Cray X1 MSP. 138
4.6 Cray X1 node (board). 139
4.7 NEC SX-6 CPU. 140



LIST OF FIGURES xv

4.8 NEC SX-6 node. 140
4.9 Global variable dot unprotected, and thus giving incorrect results

(version I). 144
4.10 OpenMP critical region protection for global variable dot

(version II). 144
4.11 OpenMP critical region protection only for local accumulations

local dot (version III). 145
4.12 OpenMP reduction syntax for dot (version IV). 146
4.13 Times and speedups for parallel version of classical Gaussian

elimination, SGEFA. 150
4.14 Simple minded approach to parallelizing one n = 2m FFT using

OpenMP on Stardust. 152
4.15 Times and speedups for the Hewlett-Packard MLIB version

LAPACK routine sgetrf. 154
5.1 Generic MIMD distributed-memory computer (multiprocessor). 157
5.2 Network connection for ETH Beowulf cluster. 157
5.3 MPI status struct for send and receive functions. 159
5.4 MPICH compile script. 162
5.5 MPICH (PBS) batch run script. 162
5.6 LAM (PBS) run script. 163
5.7 The ScaLAPACK software hierarchy. 163
5.8 Initialization of a BLACS process grid. 167
5.9 Eight processes mapped on a 2× 4 process grid in row-major order. 167
5.10 Release of the BLACS process grid. 167
5.11 Cyclic distribution of a vector. 168
5.12 Block distribution of a vector. 168
5.13 Block–cyclic distribution of a vector. 169
5.14 Block–cyclic distribution of a 15× 20 matrix on a 2× 3 processor

grid with blocks of 2× 3 elements. 171
5.15 The data distribution in the matrix–vector product A ∗ x = y with

five processors. 173
5.16 MPI matrix–vector multiply with row-wise block-distributed

matrix. 174
5.17 Block–cyclic matrix and vector allocation. 175
5.18 The 15× 20 matrix A stored on a 2× 4 process grid with big

blocks together with the 15-vector y and the 20-vector x. 175
5.19 Defining the matrix descriptors. 176
5.20 General matrix–vector multiplication with PBLAS. 176
5.21 Strip-mining a two-dimensional FFT. 180
5.22 Two-dimensional transpose for complex data. 181
5.23 A domain decomposition MC integration. 188
5.24 Cutting and pasting a uniform sample on the points. 188
5.25 The PETSc software building blocks. 190
5.26 Definition and initialization of a n × n Poisson matrix. 191
5.27 Definition and initialization of a vector. 192



xvi LIST OF FIGURES

5.28 Definition of the linear solver context and of the Krylov subspace
method. 193

5.29 Definition of the preconditioner, Jacobi in this case. 194
5.30 Calling the PETSc solver. 194
5.31 Defining PETSc block sizes that coincide with the blocks of the

Poisson matrix. 195




