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Series Preface 

Mathematics is playing an ever more important role in the physical and 
biological sciences, provoking a blurring of boundaries between scientific 
disciplines and a resurgence of interest in the modern as well as the clas­
sical techniques of applied mathematics. This renewal of interest, both in 
research and teaching, has led to the establishment of the series: Texts in 
Applied Mathematics (TAM) . 

The development of new courses is a natural consequence of a high 
level of excitement on the research frontier as newer techniques, such as 
numerical and symbolic computer systems, dynamical systems, and chaos, 
mix with and reinforce the traditional methods of applied mathematics. 
Thus, the purpose of this textbook series is to meet the current and future 
needs of these advances and encourage the teaching of new courses. 

TAM will publish textbooks suitable for use in advanced undergraduate 
and beginning graduate courses, and will complement the Applied Mathe­
matical Sciences (AMS) series, which will focus on advanced textbooks and 
research level monographs. 



Preface 

This book covers those topics necessary for a clear understanding of the 
qualitative theory of ordinary differential equations. It is written for upper­
division or first-year graduate students. It begins with a study of linear 
systems of ordinary differential equations, a topic already familiar to the 
student who has completed a first course in differential equations. An effi­
cient method for solving any linear system of ordinary differential equations 
is presented in Chapter 1. 

The major part of this book is devoted to a study of nonlinear systems 
of ordinary differential equations. Since most nonlinear differential equa­
tions cannot be solved, this book focuses on the qualitative or geometrical 
theory of nonlinear systems of differential equations originated by Henri 
Poincare in his work on differential equations at the end of the nineteenth 
century. Our primary goal is to describe the qualitative behavior of the 
solution set of a given system of differential equations. In order to achieve 
this goal, it is first necessary to develop the local theory for nonlinear 
systems. This is done in Chapter 2 which includes the fundamental local 
existence-uniqueness theorem, the Hartman-Grobman Theorem and the 
Stable Manifold Theorem. These latter two theorems establish that the 
qualitative behavior of the solution set of a nonlinear system of ordinary 
differential equations near an equilibrium point is typically the same as 
the qualitative behavior of the solution set of the corresponding linearized 
system near the equilibrium point. 

After developing the local theory, we turn to the global theory in Chap­
ter 3. This includes a study of limit sets of trajectories and the behavior of 
trajectories at infinity. Some unsolved problems of current research inter­
est are also presented in Chapter 3. For example, the Poincare-Bendixson 
Theorem, established in Chapter 3, describes the limit sets of trajecto­
ries of two-dimensional systems; however, the limit sets of trajectories of 
three-dimensional (and higher dimensional) systems can be much more 
complicated and establishing the nature of these limit sets is a topic of 
current research interest in mathematics. In particular, higher dimensional 
systems can exhibit strange attractors and chaotic dynamics. All of the 
preliminary material necessary for studying these more advanced topics is 
contained in this textbook. This book can therefore serve as a springboard 
for those students interested in continuing their study of ordinary differ­
ential equations and dynamical systems. Chapter 3 ends with a technique 
for constructing the global phase portrait of a two-dimensional dynami-



x Preface 

cal system. The global phase portrait describes the qualitative behavior of 
the solution set for all time. In general, this is as close as we can come to 
"solving" nonlinear systems. 

In Chapter 4, we study systems of differential equations depending on 
a parameter. The question of particular interest is: For what values of the 
parameter does the global phase portrait of a dynamical system change its 
qualitative structure? The answer to this question forms the subject matter 
of bifurcation theory. An introduction to bifurcation theory is presented 
in Chapter 4 where we discuss bifurcations at nonhyperbolic equilibrium 
points and periodic orbits as well as Hopf bifurcations. Chapter 4 ends 
with a discussion of homo clinic loop bifurcations for planar systems and an 
introduction to tangential homoclinic bifurcations and the resulting chaotic 
dynamics that can occur in higher dimensional systems. 

The prerequisites for studying differential equations and dynamical sys­
tems using this book are courses in linear algebra and real analysis. For 
example, the student should know how to find the eigenvalues and eigenvec­
tors of a linear transformation represented by a square matrix and should 
be familiar with the notion of uniform convergence and related concepts. In 
using this book, the author hopes that the student will develop an appre­
ciation for just how useful the concepts of linear algebra, real analysis and 
geometry are in developing the theory of ordinary differential equations 
and dynamical systems. 

I would like to express my sincere appreciation to my colleague Terrence 
Blows for his many helpful suggestions which led to a substantially im­
proved final version of this book. I would also like to thank Louella Holter 
for her patience and precision in typing the original manuscript. 
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