Texts in Applied Mathematics 7

Editors F. John J.E. Marsden L. Sirovich M. Golubitsky W. Jäger

- 1. Sirovich: Introduction to Applied Mathematics.
- Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos.
 Hale/Koçak: Differential Equations: An Introduction to Dynamics and Bifurcations.
- 4. Chorin/Marsden: A Mathematical Introduction to Fluid Mechanics, 2nd ed.
- 5. Hubbard/West: Differential Equations: A Dynamical Systems Approach, Part 1: Ordinary Differential Equations.
- Sontag: Mathematical Control Theory: Deterministic Finite Dimensional Systems.
 Perko: Differential Equations and Dynamical Systems.

Lawrence Perko

Differential Equations and Dynamical Systems

With 177 Illustrations

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Lawrence Perko Department of Mathematics Northern Arizona University Flagstaff, AZ 86011 USĂ

Editors		
F. John	J.E. Marsden	L. Sirovich
Courant Institute of	Department of	Division of A
Mathematical Sciences	Mathematics	Mathema
New York University	University of California	Brown Univ
New York, NY 10012	Berkeley, CA 94720	Providence,
USA	USA	USA
M. Golubitsky	W. Jäger	
Department of	Department of Applied	
Mathematics	Mathematics	
University of Houston	Universität Heidelberg	
Houston, TX 77004	Im Neuenheimer Feld 294	
USA	6900 Heidelberg, FRG	

Applied tics ersity RI 02912

Mathematics Subject Classification: 34A34, 34C35, 58F21, 58F25, 70K10

© 1991 Springer-Verlag New York, Inc.

Softcover reprint of the hardcover 1st edition 1991

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

ISBN-13: 978-1-4684-0394-7 e-ISBN-13: 978-1-4684-0392-3 DOI: 10.1007/978-1-4684-0392-3

To my wife, Kathy, and children, Mary, Mike, Vince, Jenny and John, for all the joy they bring to my life.

Series Preface

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: *Texts in Applied Mathematics (TAM)*.

The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the *Applied Mathematical Sciences (AMS)* series, which will focus on advanced textbooks and research level monographs.

Preface

This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations. It is written for upperdivision or first-year graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations. An efficient method for solving any linear system of ordinary differential equations is presented in Chapter 1.

The major part of this book is devoted to a study of nonlinear systems of ordinary differential equations. Since most nonlinear differential equations cannot be solved, this book focuses on the qualitative or geometrical theory of nonlinear systems of differential equations originated by Henri Poincaré in his work on differential equations at the end of the nineteenth century. Our primary goal is to describe the qualitative behavior of the solution set of a given system of differential equations. In order to achieve this goal, it is first necessary to develop the local theory for nonlinear systems. This is done in Chapter 2 which includes the fundamental local existence–uniqueness theorem, the Hartman–Grobman Theorem and the Stable Manifold Theorem. These latter two theorems establish that the qualitative behavior of the solution set of a nonlinear system of ordinary differential equations near an equilibrium point is typically the same as the qualitative behavior of the solution set of the corresponding linearized system near the equilibrium point.

After developing the local theory, we turn to the global theory in Chapter 3. This includes a study of limit sets of trajectories and the behavior of trajectories at infinity. Some unsolved problems of current research interest are also presented in Chapter 3. For example, the Poincaré–Bendixson Theorem, established in Chapter 3, describes the limit sets of trajectories of two-dimensional systems; however, the limit sets of trajectories of three-dimensional (and higher dimensional) systems can be much more complicated and establishing the nature of these limit sets is a topic of current research interest in mathematics. In particular, higher dimensional systems can exhibit strange attractors and chaotic dynamics. All of the preliminary material necessary for studying these more advanced topics is contained in this textbook. This book can therefore serve as a springboard for those students interested in continuing their study of ordinary differential equations and dynamical systems. Chapter 3 ends with a technique for constructing the global phase portrait of a two-dimensional dynamical system. The global phase portrait describes the qualitative behavior of the solution set for all time. In general, this is as close as we can come to "solving" nonlinear systems.

In Chapter 4, we study systems of differential equations depending on a parameter. The question of particular interest is: For what values of the parameter does the global phase portrait of a dynamical system change its qualitative structure? The answer to this question forms the subject matter of bifurcation theory. An introduction to bifurcation theory is presented in Chapter 4 where we discuss bifurcations at nonhyperbolic equilibrium points and periodic orbits as well as Hopf bifurcations. Chapter 4 ends with a discussion of homoclinic loop bifurcations for planar systems and an introduction to tangential homoclinic bifurcations and the resulting chaotic dynamics that can occur in higher dimensional systems.

The prerequisites for studying differential equations and dynamical systems using this book are courses in linear algebra and real analysis. For example, the student should know how to find the eigenvalues and eigenvectors of a linear transformation represented by a square matrix and should be familiar with the notion of uniform convergence and related concepts. In using this book, the author hopes that the student will develop an appreciation for just how useful the concepts of linear algebra, real analysis and geometry are in developing the theory of ordinary differential equations and dynamical systems.

I would like to express my sincere appreciation to my colleague Terrence Blows for his many helpful suggestions which led to a substantially improved final version of this book. I would also like to thank Louella Holter for her patience and precision in typing the original manuscript.

Contents

	Series Preface		vii
	Preface		ix
1	Linear Systems		1
	1.1	Uncoupled Linear Systems	1
	1.2	Diagonalization	6
	1.3	Exponentials of Operators	10
	1.4	The Fundamental Theorem for Linear Systems	16
	1.5	Linear Systems in \mathbf{R}^2	20
	1.6	Complex Eigenvalues	28
	1.7	Multiple Eigenvalues	32
	1.8	Jordan Forms	39
	1.9	Stability Theorem	51
	1.10	Nonhomogeneous Linear Systems	60
2	Nonlinear Systems: Local Theory		65
	2.1	Some Preliminary Concepts and Definitions	65
	2.2	The Fundamental Existence-Uniqueness Theorem	70
	2.3	Dependence on Initial Conditions and Parameters	78
	2.4	The Maximal Interval of Existence	86
	2.5	The Flow Defined by a Differential Equation	94
	2.6	Linearization	101
	2.7	The Stable Manifold Theorem	104
	2.8	The Hartman–Grobman Theorem	118
	2.9	Stability and Liapunov Functions	128
	2.10	Saddles, Nodes, Foci and Centers	135
	2.11	Nonhyperbolic Critical Points in \mathbf{R}^2	145
	2.12	Gradient and Hamiltonian Systems	152

Contents

3	Nonlinear Systems: Global Theory		
	3.1	Dynamical Systems and Global Existence Theorems	164
	3.2	Limit Sets and Attractors	174
	3.3	Periodic Orbits, Limit Cycles and Separatrix Cycles	184
	3.4	The Poincaré Map	193
	3.5	The Stable Manifold Theorem for Periodic Orbits	202
	3.6	Hamiltonian Systems with Two Degrees of Freedom	216
	3.7	The Poincaré–Bendixson Theory in \mathbf{R}^2	226
	3.8	Lienard Systems	234
	3.9	Bendixson's Criteria	245
	3.10	The Poincaré Sphere and the Behavior at Infinity	248
	3.11	Global Phase Portraits and Separatrix Configurations	269
	3.12	Index Theory	273
4	Nonlinear Systems: Bifurcation Theory 2		
	4.1	Structural Stability and Piexoto's Theorem	292
	4.2	Bifurcations at Nonhyperbolic Equilibrium Points	305
	4.3	Hopf Bifurcations and Bifurcations of Limit Cycles from	
		a Multiple Focus	314
	4.4	Bifurcations at Nonhyperbolic Periodic Orbits	324
	4.5	One-Parameter Families of Rotated Vector Fields	346
	4.6	The Global Behavior of One-Parameter Families of	
		Periodic Orbits	358
	4.7	Homoclinic Bifurcations	363
	4.8	Melnikov's Method	378
	Refe	erences	395
	Inde	X	397

xii