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Preface 

Over the last decade, physicists, biologists, astronomers and economists have created a new way of 
understanding the growth of complexity in nature. This new science, called chaos, offers a way of 
seeing order and pattern where formerly only the random, erratic, the unpredictable - in short, the 
chaotic - had been observed. 

James Gleick 

This book is written for everyone who, even without much knowledge of technical mathematics, 
wants to know the details of chaos theory and fractal geometry. This is not a textbook in the usual 
sense of the word, nor is it written in a 'popular scientific' style. Rather, it has been our desire to give 
the reader a broad view of the underlying notions behind fractals, chaos and dynamics. In addition, 
we have wanted to show how fractals and chaos relate to each other and to many other aspects of 
mathematics as well as to natural phenomena. A third motif in the book is the inherent visual and 
imaginative beauty in the structures and shapes of fractals and chaos. 

For almost ten years now mathematics and the natural sciences have been riding a wave which, 
in its power, creativity and expanse, has become an interdisciplinary experience of the first order. 
For some time now this wave has also been touching distant shores far beyond the sciences. Never 
before have mathematical insights - usually seen as dry and dusty - found such rapid acceptance 
and generated so much excitement in the public mind. Fractals and chaos have literally captured the 
attention, enthusiasm and interest of a world-wide public. To the casual observer, the color of their 
essential structures and their beauty and geometric form captivate the visual senses as few other things 
they have ever experienced in mathematics. To the student, they bring mathematics out of the realm 
of ancient history into the twenty-first century. And to the scientist, fractals and chaos offer a rich 
environment for exploring and modelling the complexity of nature. 

But what are the reasons for this fascination? First of aU, this young area of research has created 
pictures of such power and singularity that a collection of them, for example, has proven to be one of 
the most successful world-wide series of exhibitions ever sponsored by the Goethe-Institute.2 More 
important, however, is the fact that chaos theory and fractal geometry have corrected an outmoded 
conception of the world. 

The magnificent successes in the fields of the natural sciences and technology had, for many, fed 
the illusion that the world on the whole functioned like a huge clockwork mechanism, whose laws 
were only waiting to be deciphered step by step. Once the laws were known, it was believed, the 
evolution or development of things could- at least in principle- be ever more accurately predicted. 
Captivated by the breathtaking advances in the development of computer technology and its promises 
of a greater command of information, many have put increasing hope in these machines. 

But today it is exactly those at the active core of modem science who are proclaiming that this 
hope is unjustified; the ability to see ever more accurately into future developments is unattainable. 

1J. Gleick, Chaos- Making a New Science, Viking, New York, 1987. 
2Aione at the venerable London Museum of Science, the exhibition Frontiers of Chaos: lmages of Complex Dynamical 

Systems by H. Jiirgens, H.-0. Peitgen, M. Priifer, P. H. Richter and D. Saupe attracted more than 140,000 visitors. Since 1985 
this exhibition has travelled to more than 100 cities in more than 30 countries on ali fi ve continents. 



Vlll Preface 

One conclusion that can be drawn from the new theories, which are admittedly still young, is that 
stricter determinism and apparently accidental development are not mutually exclusive, but rather that 
their coexistence is more the rule in nature. Chaos theory and fractal geometry address tbis issue. 
Wben we examine the development of a process over a period of time, we speak in terms used in 
cbaos theory. When we are more interested in the structural forms which a chaotic process leaves in its 
wake, then we use the terminology of fractal geometry, which is really the geometry whose structures 
are what give order to chaos. 

In some sense, fractal geometry is first and foremost a new 'language' used to describe, model and 
analyze the complex forms found in nature. But while the elements of the 'traditionallanguage' - the 
familiar Euclidean geometry - are basic visible forms such as lines, circles and spheres, those of the 
new language do not lend themselves to direct observation. They are, namely, algorithms, whicb can 
be transformed into shapes and structures only with the help of computers. In addition, the supply of 
these algorithmic elements is inexhaustibly large; and they are capable of providing us with a powerful 
descriptive tool. Once this new language bas been mastered, we can describe tbe form of a cloud as 
easily and precisely as an architect can describe a house using the language of traditional geometry. 

The correlation of chaos and geometry is anything but coincidenta!. Rather, it is a witness to tbeir 
deep kinship. Tbis kinsbip can best be seen in the Mandelbrot set, a matbematical object discovered 
by Benoit Mandelbrot in 1980. It bas been described by some scientists as the most complex - and 
possibly the most beautiful - object ever seen in mathematics. lts most fascinating cbaracteristic, 
bowever, bas only just recently been discovered: namely, tbat it can be interpreted as an illustrated 
encyclopedia of an infinite number of algorithms. It is a fantastically efficiently organized storehouse 
of images, and as such it is the example par excellence of order in cbaos. 

Fractals and modem chaos theory are also linked by the fact that many of the contemporary 
pace-setting discoveries in their fields were only possible using computers. From the perspective 
of our inherited understanding of mathematics, this is a challenge which is felt by some to be a 
powerful renewal and liberation and by others to be a degeneration. However this dispute over tbe 
'right' mathematics is decided, it is already clear that the history of the sciences bas been enriched 
by an indispensable chapter. Only superficially is the issue one of beautiful pictures or of perils of 
deterministic laws. In essence, chaos theory and fractal geometry radically question our understanding 
of equilibria - and therefore of harmony and order - in nature as well as in other contexts. They 
offer a new holistic and integral model wbich can encompass a part of the true complexity of nature 
for the first time. It is highly probable that the new methods and terminologies will allow us, for 
example, a much more adequate understanding of ecology and climatic developments, and thus they 
could contribute to our more effectively tackling our gigantic global problems. 

We have worked hard in trying to reveal the elements of fractals, chaos and dynamics in a non
threatening fashion. Each chapter can stand on its own and can be read independently from the 
others. Each chapter is centered around a running 'story' typeset in Times and printed toward the outer 
margins. More technical discussions, typeset in Helvetica and printed toward the inner margins, have 
been included to occasionally enrich the discussion by providing deeper analyses for tbose wbo may 
desire them and those who are prepared to work themselves through some mathematical notations. 
At the end of each chapter we offer a short BASIC program, the Program of the Chapter, wbicb is 
designed to highligbt one of tbe most prominent experiments of the respective chapter. 

This book is a close relative of the two-volume set Fractals for the Classroom whicb was publisbed 
by Springer-Verlag and the National Council of Teacbers of Mathematics in 1991 and 1992. While 
those books were originally written for an audience which is involved with the teaching or Ieaming 
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of mathematics, this book is intended for a much larger readership. It combines most parts of the 
afore-mentioned books with many extensions and two important appendices. 

The first appendix, written by Yuval Fisher, deals with aspects of image compression using funda
mental ideas from fractal geometry. Such applications have been discussed for about five years and 
hopes of new breakthrough technologies have risen very high through the work and announcements 
of the group around Michael F. Barnsley. Since Barnsley has kept his work absolutely secret we still 
don't know what is possible and what is not. But Fisher's contribution allows us to make a fair guess. 
Anybody who is interested in the perspectives of image compression through fractals will appreciate 
this appendix. 

The second appendix is written by Cari J. G. Evertsz and Benoit B. Mandelbrot and deals with 
multifractal measures, which is one of the hottest subjects in the current scientific discussion of fractal 
geometry. Usually we think of fractals as objects having some kind of self-similarity. The discussion of 
multifractal measures extends this concept to the distributions of quantities (for example, the amount 
of ground water found at a certain location under the surface). Furthermore, it overcomcs some 
shortcomings of the fractal dimension when used as a tool for measurement in science. 

Even with these two important contributions there remain many holes in this book. However, 
fortunately there are exceptional books already in print that can close these gaps. We list the following 
only as examples: For portraits of the personalities in the field and the genesis of the subject matter, as 
well as the scientific background and interrelationships, there are Chaos- Making a New Science,3 by 
James Gleick, and Does God Play Dice ?,4 by lan Stewart. For the reader who is more interested in a 
systematic mathematical exposition or who is ready to advance into the depths, there are the following 
titles: An Introduction to Chaotic Dynamical Systems5 and Chaos, Fractals, and Dynamics,6 both 
by Robert L. Devaney, and Fractals Everywhere,7 by Michael F. Barnsley. An adequate technical 
discussion of fractal dimension can be found in the two exceptional texts, Measure, Topology and 
Fractal Geometry, 8 by Gerald A. Edgar, and Fractal Geometry,9 by Kenneth Falconer. Readers more 
interested in fractals in physics will appreciate Fractals, 10 by Jens Feder, while readers who look for 
fractals in chemistry should not miss The Fractal Approach to Heterogeneous Chemistry, 11 by David 
Avnir. And last but not least, there is the book of books about fractal geometry written by Benoit B. 
Mandelbrot, The Fractal Geometry of Nature. 12 

We owe our gratitude to many who have assisted us during the writing of this book. Our students 
Torsten Cordes and Lutz Voigt have produced most of the graphics very skillfully and with unlimited 
patience. They were joined by two more of our students, Ehler Lange and Wayne Tvedt, during part of 
the preparation time. Douglas Sperry has read our text very carefully at severa! stages of its evolution 
and, in addition to helping to get our English de-Germanized, has served in the broader capacity of 
copy editor. Ernst Gucker, who is working on the German edition, suggested many improvements. 
Friedrich von Haeseler, Guentcho Skordev, Heinrich Niederhausen and Ulrich Krause have read severa! 
chapters and provided valuable suggestions. We also thank Eugen Allgower, Alexander N. Charkovsky, 

3Viking, 1987. 
4 Penguin Books, 1989. 
5Second Edition, Addison Wesley, 1989. 
6 Addison Wesley, 1990. 
7 Academic Press, 1989. 
8Springer-Verlag, 1990 
9 J ohn Wi1ey and Sons, 1990. 

10Pienum, 1988 
11 Wiley, 1989 
12w. H. Freeman, 1982. 
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Mitchell J. Feigenbaum, Przemyslaw Prusinkiewicz, and Richard Voss for reading parts of the original 
manuscript and giving valuable advice. Gisela Grlindl has helped us with selecting and organizing 
third-party art-work. Claus Hosselbarth did an excellentjob in designing the cover. Evan M. Maletsky, 
Terence H. Perciante and Lee E. Yunker read parts of our early manuscripts and gave crucial advice 
conceming the design of the book. Finally, we are most grateful to Yuval Fischer, Cari J. G. Evertsz 
and Benoit B. Mandelbrot for contributing the appendices to our book, and to Mitchell Feigenbaum 
for his remarkable foreword. 

The entire book has been produced using the Tpc and rn:rpc typesetting systems where ali figures 
(except for the half-tone and color images) were integrated in the computer files. Even though it 
took countless hours of sometimes painful experimentation setting up the necessary macros it must be 
acknowledged that this approach immensely helped to streamline the writing, editing and printing. 

Finally, we ha ve been very pleased with the excellent cooperation of Springer-Verlag in New 
York. 

Heinz-Otto Peitgen, Hartmut Jiirgens, Dietmar Saupe 

Bremen, May 1992 
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Foreword 

Mitchell J. Feigenbaum1 

The study of chaos is a part of a 
larger program of study of so-called 
"strongly" nonlinear systems. Within 
the context of physics, the exemplar of 
such a system is a fluid in turbulent 
motion. If chaos is not exactly the 
study of fluid turbulence, nevertheless, 
the image of turbulent, erratic motion 
serves as a powerful icon to rernind a 
physicist of the sorts of problems he 
would ultimately like to comprehend. 
As for all good icons, while a vague 
impression of what one wants to know 
is sensibly clear, a precise delineation of 
many of these quests is not so readily 
available. In a state of ignorance, the 
most poignantly insightful questions are 

Mitchell J. Feigenbaum 

not yet ripe for formulation. Of course, this comment remains true despite 
the fact that for technical exigencies, there are definite questions that one 
desperately wants the answers to. 

Fluid turbulence indeed presents us with highly erratic and only partially 
predictable phenomena. Historically, since Laplace say, physical scientists 
have turned to the statistica! methods when presented with problems that 
concern the mutual behaviors of innumerably large numbers of pieces. lf 
for no other reason, one does so to reduce the number of details that one 
must measure, specify, compute, whatever. Thus, it is easier to say that 
43% of the population voted for X than to offer the roster of the behavior 
of each of millions of voters. Just so, it is easier to specify how many gas 
molecules there are in an easily measurable volume than to write out the 
list of where and how fast each one is. This idea is altogether reasonable if 
not even the most desirable one. However, if one is to work out a theory of 

1 Mitchell 1. Feigenbaum, Toyota Professor, The Rockefeller University, New York. 
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these things, so that a prediction might be rendered, then as in aii matters of 
statistics, one must determine a so-called distribution function. This means 
a theoretical prediction of just how often out of uncountably many elections, 
etc. it is expected that each value of this average voter response occurs. For 
the voter question and the density of a gas question, there is just one number 
to determine. For the problem of fluid turbulence, even in this statistica! 
quest, one must ask a much richer question: For example, how often do we 
see eddies of each size rotating at such and such a rate? 

For the problem of voters 1 don't ha ve any serious idea of how to theoret
ically determine this requisite distribution; nor with good frequency, do the 
polls succeed in measuring it. After ali, it might not exist in the sense that it 
rapidly and significantly varies from day to day. However, since physicists 
have long known quite reliably the laws of fluids - that is, the rules that 
allow you to deduce what each bit of the fluid will do !ater if you know 
what they all do now, there might be a way of doing so. Indeed, the main 
idea of the branch of physics called statistica! mechanics is rooted in the 
belief that one knows in advance how to do this. The idea is, basically, that 
each possible detailed configuration occurs with equal likelihood. Indeed 
the word "chaos" first entered physics in Maxwell's phrase "state of mole
cular chaos" in the last century to loosely mean this. Statistica} mechanics 
- especially in its quantum mechanical form - works very well indeed, 
and provides us with some of our most wonderful knowledge. However, 
altogether regrettably, in the context of fluid turbulence, it bas persisted for 
the last century to roundly fail. It tums out to be a question of truly deduc
ing from the known laws of microscopic motion of fluids what this rule of 
distribution must be, because the easy guess of "everything is as random as 
possibly" simply doesn't work. And when that guess doesn't work, there 
exists as of today no methodology to provide it. Moreover, if in our present 
state of knowledge we should be forced to appraise the situation, then we 
would guess that an extraordinarily complicated distribution is required to 
account for the phenomena: Should it be fractal in nature, then fractal of the 
most perverse sort. And the worst part is that we really don't possess the 
mathematical power to generally say what class of object it might be sought 
among. Remember, we're not looking for a perfectly good quick-fix: If we 
are serious in seeking understanding of the analytical description of Nature, 
then we demand much more. When the subject of chaos and a part of that 
larger program called strongly nonlinear physics shall have been deemed 
penetrated, we shall know thoroughly how to respond to such questions, 
and readily image intuitively what the answers look like. To date, we can 
now compellingly do so for much simpler problems - and have come to 
possess that capability only within the last decades. 

As I have said earlier, I don't necessarily care about turbulence. Rather, 
it serves as an icon representing a genre of problems. 1 was trained as a 
theoretical high energy physicist, and grew deeply troubled that no methods 
save for that of successive improvements, so-called perturbation methods, 
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existed. Apart from the brilliant effort of Ken Wilson, in his version of the 
renormalization group, that circumstance is unchanged. Knowing the mi
croscopic laws of how things move - such schemes are called "dynamical 
systems" - still leaves us almost altogether in the dark as to their larger 
consequences. Are the theories no good, or is it that we just can't determine 
what they contain? At the moment it's impossible to say. From high energy 
physics to fluid physics and astrophysics our inherited ways of thinking 
mathematically simply fail to serve us. In a way, if perhaps modest, the 
questions tackled in the effort to comprehend what is now called chaos have 
faced these questions of methodology head on. 

Let me now backtrack and discuss nonlinearity. This means first linear-
ity. Linearity means that the rule that determines what a piece of a system 
is going to do next is not inftuenced by what it is doing now. More pre
cisely, this is intended in a differential or incremental sense: For a linear 
spring, the increase of its tension is proportional to the increment whereby 
it is stretched, with the ratio of these increments exactly independent of 
how much it bas already been stretched. Such a spring can be stretched 
arbitrarily far, and in particular will never snap or break. Accordingly, no 
real spring is linear. 

The mathematics of linear objects is particularly felicitous. As it hap
pens, linear objects enjoy an identica}, simple geometry. The simplicity of 
this geometry always allows a relatively easy mental image to capture the 
essence of a problem, with the technicality, growing with the number of 
parts, basically a detail, until the parts become infinite in number, although 
often then too, precise answers can be readily determined. 

The historical prejudice against nonlinear problems is that no so simple 
nor universal geometry usually exists. Until recently, the general scien
tific perception was that a certain nonlinear equation characterized some 
particular problem. If the specific problem was sufficiently interesting or 
demanding of resolution, then perhaps, particular methods could be created 
for it, while however, it was well understood that the travail would probably 
be of no avail in other contexts. 

Perturbation Method Indeed only one method was well understood and universally learned, 
the perturbation method. If a linear problem is viewed through distorting 
lenses, it qualitatively will do the same thing: if it repeated every five sec
onds it would persist to appear so seen through the lenses. Nevertheless, 
it would now no longer appear to exhibit equal tension increments for the 
equal elongations: After ali, the tension is measurably unchanged by dis
torting lenses, whereas all spatial measurements are. That is, the device of 
distorting lenses tums a linear problem into a nonlinear one. The method of 
perturbation basically works only for nonlinear problems that are distorted 
versions of linear ones. And so, this uniquely well-learned method is of no 
avail in matters that aren't merely distortions of linear ones. 

Geometry of Chaos Chaos is absent in distorted linear problems. Chaos and other such 
phenomena that are qualitatively absent in linear problems are what we call 
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strongly nonlinear phenomena. It is this failure to subscribe to the spectrum 
of configurations allowed by distorting a simple geometry that renders these 
problems anywhere from hard in the extreme to impenetrable. How does 
one ever start to intelligently describe an awkward new geometry? This 
question is for example intended to be loosely akin to the question of how 
one should describe the geometry of the surf ace of the Earth, not through our 
abstracted perceptual apparatus that allows us to visualize it immersed within 
a vastly larger three-dimensional setting, but rather intrinsically, forbidding 
this use of imagination. The solution of this question, first by Gauss and 
then extended to arbitrary dimensions by Riemann is, as many of you must 
know, at the center of the way of thinking of Einstein's General Theory 
of Relativity, our theory of gravity. What is to be the geometry of the 
object that describes the turbulent fluid's distribution function? Are there 
intrinsic geometries that describe various chaotic motions, that serve as a 
unifying way of viewing these disparate nonlinear problems, as kindred? 
1 ask the question because 1 know the answer to be affirmative in certain 
broad circumstances. The moment this is accepted, then strongly nonlinear 
problems appear no longer as each one its own case, but rather coordinated 
and sui table for theorizing upon as their own abstract entity. This promotion 
from the detailed specific to the membership in a significant general class 
is one of the triumphs of the study of chaos in the last decade or two. 

An even stronger notion than this generality of shared qualitative geom
etry is the notion of universality, which means no less than that this shared 
geometry is not only one of a qualitative similarity but also one of true quan
titative identicality. After what has been, if you will, a long preamble, the 
fact that strongly nonlinear problems, with surprising frequency, can share 
a quantitatively identica! geometry is what 1 shall pursue for the rest of this 
discussion, and constitutes what is termed universality in the transition to 
chaos. 

In a qualitative way of thinking, universality can be seen to be not so 
surprising. There are two arguments to support this. The first part has sim
ply to do with nonlinearity. Just as a linear object has a constant coefficient 
of proportionality between, for example, its tension and its expansion, a 
similar, but nonlinear version, bas an effective coefficient dependent upon 
its extension. So, consider two completely different nonlinear systems. By 
adjusting things correctly it is not inconceivable that the effective coeffi
cients of each part of each of the two systems could be set the same so that 
then their behaviors could, at least initially, be identica!. That is, by setting 
some numerica! constants (properties, so to speak, that specify the environ
ment, mathematically called 'parameters') and the actual behaviors of these 
two systems, it is possible that they can do the identica! thing. For a linear 
problem this is ostensibly true: For systems with the same number of parts 
and mutual connections, a freedom to adjust all the parameters allows one 
to be adjusted tobe identica! (truly) to the other. But, for many pieces, this 
is many adjustments. For a nonlinear system, adjusting a small number of 
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parameters can be compensated, in this quest for identical behavior, by an 
adjustment of the momentary positions of its pieces. But then it must be 
that not all motions can be so duplicated between systems. 

Thus, the first part of the argument is that nonlinearity confers a certain 
flexibility upon the adaptability of an object to desirable behavior. Never
theless, should the precise adjustment of too many specific and subtle details 
be required in order to achieve a certain universal behavior, then the idea 
would be pedantic at best. 

However, there is a second more potent argument, a paraphrasing of 
Leibniz in "The Monadology" which can render this first argument potent. 
Let us contemplate that the motion we intend to determine to be univer
sal over nonlinear systems bas arisen by the successive imposition of more 
and more qualitative constraints. Should this growingly large host of im
positions prove to be generally amenable to such systems (this is the hard 
and a priori neither obvious nor reasonable part of the discussion) then we 
shall ultimately discover these disparate systems to all be identically con
strained by an infinite number of qualitative and if you will, self consistent, 
requirements. Now, following Leibniz, we ask, "In how many precise, or 
quantitative, ways can this situation be tenable?" And we respond, fol
lowing Leibniz, by asserting in precisely one possible uniquely determined 
way. 

This is the best verbalization 1 know how to offer to explain why such a 
universal behavior is possible. Both mathematics and physical experimen
tation confirm its rectitude perfectly. But it is perhaps difficult to have you 
realize how extraordinary this result appeared given the backdrop of physi
cal and mathematical thinking in 1976 when it first appeared together with 
its full conceptual analysis. As anecdotal evidence, 1 had been directed to 
expound these results to one of the great mathematicians who is renowned 
for his results on dynamical systems. 1 spoke with him at the very end of 
1976. 1 kept trying to tell him that there was a complete quantitative uni
versality to these phenomena, and he equally often understood me to have 
duplicated some known qualitative results. Finally he said "You mean to 
tell me these are metrical results?" (Metrical is a mathematical code word 
that means quantitative.) And 1 said "Yes." "Well, then you're wrong!" he 
asserted, and tumed his back on me to terminate the conversation. 

The Scientific Method Anecdote aside, what is remarkable about ali this? First of ali, an 
easy piece of methodological insight. As practitioners of a truly analyti
cal science, physicists were trained to know that qualitative explanations 
are insufficient to base truth upon. Quite to the contrary, it is regarded 
to be at the heart of the "scientific method" that ever more precise mea
surements will discriminate between rival quantitative theories to ultimately 
select out one as the correct encoding ofthe qualitative content. (Thus, think 
of geocentric versus heliocentric planetary theories, both qualitatively ex
plaining the retrograde motions of the planets.) Here the method is turned 
on its head: Qualitatively similar phenomena, independent of any other 
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ideational input must ineluctably lead to the measurably identica! quanti
tative result. Whence the total phenomenological support for this mighty 
"scientific method?" 

Secondly, a new principle of "economy" immediately emerges. Why 
put out Herculean efforts to calculate the consequences of some particular 
and highly difficult encoding of physical laws, when anything else, however 
trivial, possessing the same qualitative properties will yield exactly the same 
predictions and results? And this all the more satisfying, since one doesn't 
even know the exact equations that describe various of these phenomena, 
fluid phenomena in particular. Because, these phenomena have nothing to 
do, whatsoever, with the detailed, particular, microscopic laws that happen 
to be at play. This aspect, that is, of substituting easy problems for hard ones 
with no penalty has been, as a way of thinking and performing research, 
the prominent fruit of the recognition of universality. When can it work? 
Well, in complicated interactions of scores of chemical species, in laser 
phenomena, in solid state phenomena, in, at least only partially, biologica! 
rhythmic phenomena such as apneas and arhythmias, in ftuids and of course, 
in mathematics. 

But now, as 1 move towards the end of this claim for virtue, let me dis
cuss "chaos" a bit more per se and revisit my opening "preamble." Much 
of chaos as a science is connected with the notion of "sensitive dependence 
on initial conditions." Technically, scientists term as "chaotic" those non
random complicated motions that exhibit a very rapid growth of errors that, 
despite perfect determinism, inhibits any pragmatic ability to render accu
rate long-term prediction. While nomenclaturally speaking, this is perforce 
true, I personally am not most intrigued nor concemed with this facet of 
my subject. I've never told you what the "transition to chaos" means, but 
you can readily guess from the verbiage that it's something that starts off 
not being chaotic, ends up being so, and hence somehow passes from one 
to the next. The most important fact is that there is a discemibly precise 
"moment", with a corresponding behavior, which is neither chaotic nor non
chaotic, at which this transition occurs. Yes, errors do grow, but only in a 
marginally predictable, rather than in an unpredictable fashion. In this state 
of marginal predictability inheres embryonically ali the seeds of the chaotic 
behavior to come. That is, this transitional point, the legitimate child of uni
versality, without full-ftedged sensitive dependence upon initial conditions 
knows fully how to dictate to its progeny in turn how this latter phenomenon 
must unfold. For a certain range of possible behaviors of strongly non linear 
systems, this range surrounding the transition to chaos, the information ob
tained just at the transition point fully organizes the spectrum of behaviors 
that these chaotic systems can exhibit. 

Now what is it that turns out to be universal? The answer, mostly, is 
a precise quantitative determination of the intrinsic geometry of the space 
upon which this marginal chaotic motion lives together with the full knowl
edge of how in the course of time this space is explored. lndeed, it was 
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from the analysis of universality at the transition to chaos that we have come 
to recognize the precise mathematical object that fully furnishes the intrinsic 
geometry of these sort of spaces. This object, a so-called scaling function, 
together with the mathematically precise delineation of universality, consti
tutes one of the major results of the study of chaos. Granted the broad range 
of objects that can be termed fractal, these geometries are fractal. But not 
the heuristic sort of 'dragons', 'carpets', 'snowflakes', etc. Rather, these are 
structures which are elaborated upon at smaller and smaller scales differ
ently at each point of the object, and so are infinitely more complicated than 
the above heuristic objects. There is, in more than just a way of speaking, a 
geometry of these dynamically created objects, and that geometry requires 
a scaling function to fully elucidate it. Many of you are aware of the ex

istence of a certain object called the 'Mandelbrot set'. Virtually none of 
you, though, even having simulated it on your own computers, are aware 
that its ubiquitous existence in those sufficiently smooth contexts in which it 
appears, is the consequence of universality at the transition of chaos. Every 
one of its details is implicit in those embryonic seeds I have mentioned 
before. 

Thus, the most elementary consequence of this deep universal geometry 
is that, in gross organization we notice a set of discs - the largest the 
main cardioid - one abutting upon the next and of rapidly diminishing 
radii. How rapidly do they diminish in size? In fact, each one is 8 times 
smaller that its predecessor, with 8, a universal constant, approximately 
equal to 4.6692016 ... , the best known of the constants that characterize 
universality at the transition of chaos. 

I have now come around full circle to my introductory comments. We 
have, in the last decade, succeeded in coming to know many of the correct 
ideas and their mathematical language in regard to the question, 'What is 
the nature of the objects upon which we see our statistica] distributions?' 
'Dimension' is a mathematical word possessing a quite broad range of tech
nical connotations. Thus, the theory of universality is erected in a very 
low (that is, one- or two-) dimensional setting. However the information 
discussed is of an infinite-dimensional character. The physical phenomena 
exhibiting these behaviors can appear, for example, in the physical three
dimensional space of human experience, with the number of interacting, 
cooperating pieces that comprise the system investigated - also a state
ment of its dimension - either merely a few or an infinitude. Nevertheless, 
our understanding to date is of what must be admitted tobe a relatively sim
ple set of phenomena - relatively simple in comparison to the swirling and 
shattering complexity of fluid motions at the foot of a waterfall, phenomena 
that loom large and deeply impress upon us how much lies undiscovered 
before us. 


