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Preface 

Mathematical method, as it applies in the natural sciences in particular, 
consists of solving a given problem (represented by a number of observed or 
observable data) by neglecting so many of the details (these are afterward 
termed "irrelevant") that the remaining part fits into an axiomatically estab­
lished model. Each model carries a theory, describing the implicit features of 
the model and its relations to other models. The role of the mathematician 
(in this oversimplified description of our culture) is to maintain and extend 
the knowledge about the models and to create new models on demand. 

Mathematical analysis, developed in the 18th and 19th centuries to solve 
dynamical problems in physics, consists of a series of models centered around 
the real numbers and their functions. As examples, we mention continuous 
functions, differentiable functions (of various orders), analytic functions, and 
integrable functions; all classes of functions defined on various subsets of 
euclidean space IRn, and several classes also defined with vector values. Func­
tional analysis was developed in the first third of the 20th century by the 
pioneering work of Banach, Hilbert, von Neumann, and Riesz, among others, 
to establish a model for the models of analysis. Concentrating on "external" 
properties of the classes of functions, these fit into a model that draws its 
axioms from (linear) algebra and topology. The creation of such "super­
models" is not a new phenomenon in mathematics, and, under the name of 
"generalization," it appears in every mathematical theory. But the users of 
the original models (astronomers, physicists, engineers, et cetera) naturally 
enough take a somewhat sceptical view of this development and complain 
that the mathematicians now are doing mathematics for its own sake. As a 
mathematician my reply must be that the abstraction process that goes into 
functional analysis is necessary to survey and to master the enormous material 
we have to handle. It is not obvious, for example, that a differential equation, 
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a system of linear equations, and a problem in the calculus of variations have 
anything in common. A knowledge of operators on topological vector spaces 
gives, however, a basis of reference, within which the concepts of kernels, 
eigenvalues, and inverse transformations can be used on all three problems. 
Our critics, especially those well-meaning pedagogues, should come to realize 
that mathematics becomes simpler only through abstraction. The mathe­
matics that represented the conceptual limit for the minds of Newton and 
Leibniz is taught regularly in our high schools, because we now have a clear 
(i.e. abstract) notion of a function and of the real numbers. 

When this defense has been put forward for official use, we may admit in 
private that the wind is cold on the peaks of abstraction. The fact that the 
objects and examples in functional analysis are themselves mathematical 
theories makes communication with nonmathematicians almost hopeless and 
deprives us of the feedback that makes mathematics more than an aesthetical 
play with axioms. (Not that this aspect should be completely neglected.) The 
dichotomy between the many small and directly applicable models and the 
large, abstract supermodel cannot be explained away. Each must find his own 
way between Scylla and Charybdis. 

The material contained in this book falls under Kelley's label: What Every 
Young Analyst Should Know. That the young person should know more (e.g. 
more about topological vector spaces, distributions, and differential equa­
tions) does not invalidate the first commandment. The book is suitable for a 
two-semester course at the first year graduate level. If time permits only a 
one-semester course, then Chapters 1, 2, and 3 is a possible choice for its 
content, although if the level of ambition is higher, 4.1-4.4 may be substituted 
for 3.3-3.4. Whatever choice is made, there should be time for the student to 
do some of the exercises attached to every section in the first four chapters. 
The exercises vary in the extreme from routine calculations to small guided 
research projects. The two last chapters may be regarded as huge appendices, 
but with entirely different purposes. Chapter 5 on (the spectral theory of) 
unbounded operators builds heavily upon the material contained in the 
previous chapters and is an end in itself. Chapter 6 on integration theory 
depends only on a few key results in the first three chapters (and may be 
studied simultaneously with Chapters 2 and 3), but many of its results are 
used implicitly (in Chapters 2-5) and explicitly (in Sections 4.5-4.7 and 5.3) 
throughout the text. 

This book grew out of a course on the Fundamentals of Functional 
Analysis given at The University of Copenhagen in the fall of 1982 and again 
in 1983. The primary aim is to give a concentrated survey of the tools of 
modern analysis. Within each section there are only a few main results­
labeled theorems-and the remaining part of the material consists of sup­
porting lemmas, explanatory remarks, or propositions of secondary impor­
tance. The style of writing is of necessity compact, and the reader must be 
prepared to supply minor details in some arguments. In principle, though, the 
book is "self-contained." However, for convenience, a list of classic or estab-



Preface IX 

lished textbooks, covering (parts of) the same material, has been added. In the 
Bibliography the reader will also find a number of original papers, so that she 
can judge for herself "wie es eigentlich gewesen." 

Several of my colleagues and students have read (parts of) the manuscript 
and offered valuable criticism. Special thanks are due to B. Fuglede, G. Grubb, 
E. Kehlet, K.B. Laursen, and F. Tops0e. 

The title of the book may convey the feeling that the message is urgent and 
the medium indispensable. It may as well be construed as an abbreviation of 
the scholarly accurate heading: Analysis based on Norms, Operators, and 
Weak topologies. 

Copenhagen Gert Kjrergard Pedersen 

Preface to the Second Printing 

Harald Bohr is credited with saying that if mathematics does not teach us 
to think correctly, at least it teaches us how easy it is to think incorrectly. 
Certainly an embarrassing number of mistakes and misprints in this book 
have been brought to my attention during the past five years. Also, more or 
less desperate students have pointed out many phrases and formulations that 
made little sense without further explanation. I am deeply grateful to Springer­
Verlag for allowing the numerous corrections in this revised second printing, 
and hope that it will be of improved service to the fastidious mathematicians 
it was aimed for. 

GKP 
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