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Preface to the Second Edition 

In this edition, a set of Supplementary Notes and Remarks has been 
added at the end, grouped according to chapter. Some of these call 
attention to subsequent developments, others add further explanation 
or additional remarks. Most of the remarks are accompanied by a 
briefly indicated proof, which is sometimes different from the one given 
in the reference cited. The list of references has been expanded to 
include many recent contributions, but it is still not intended to be 
exhaustive. 

Bryn Mawr, April 1980 John C. Oxtoby 



Preface to the First Edition 

This book has two main themes: the Baire category theorem as a method 
for proving existence, and the "duality" between measure and category. 
The category method is illustrated by a variety of typical applications, 
and the analogy between measure and category is explored in all of its 
ramifications. To this end, the elements of metric topology are reviewed 
and the principal properties of Lebesgue measure are derived. It turns 
out that Lebesgue integration is not essential for present purposes-the 
Riemann integral is sufficient. Concepts of general measure theory and 
topology are introduced, but not just for the sake of generality. Needless 
to say, the term "category" refers always to Baire category; it has nothing 
to do with the term as it is used in homological algebra. 

A knowledge of calculus is presupposed, and some familiarity with 
the algebra of sets. The questions discussed are ories that lend themselves 
naturally to set-theoretical formulation. The book is intended as an 
introduction to this kind of analysis. It could be used to supplement a 
standard course in real analysis, as the basis for a seminar, or for inde­
pendent study. It is primarily expository, but a few refinements of known 
results are included, notably Theorem 15.6 and Proposition 20.4. The 
references are not intended to be complete. Frequently a secondary 
source is cited where additional references may be found. 

The book is a revised and expanded version of notes originally 
prepared for a course of lectures given at Haverford College during the 
spring of 1957 under the auspices of the William Pyle Philips Fund. 
These, in turn, were based on the Earle Raymond Hedrick Lectures 
presented at the Summer Meeting of the Mathematical Association of 
America at Seattle, Washington, in August, 1956. 

Bryn Mawr, April 1971 John C. Oxtoby 
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