PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10/13 pt. System LaTeX 2_{ε} [TB]

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication data

Ovsienko, Valentin.

Projective differential geometry old and new: from the Schwarzian derivative to the cohomology of diffeomorphism groups / V. Ovsienko, S. Tabachnikov.

p. cm. – (Cambridge tracts in mathematics; 165)
 Includes bibliographical references and index.

ISBN 0 521 83186 5 (hardback)

Projective differential geometry. I. Tabachnikov, Serge. II. Title. III. Series.

QA660.O87 2005 516.3'6-dc22 2004045919

ISBN 0 521 83186 5 hardback

The publisher has used its best endeavors to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

Contents

	Pref	ace: why projective?	page ix
1_	Introduction		
	1.1	Projective space and projective duality	1
	1.2	Discrete invariants and configurations	5
	1.3	Introducing the Schwarzian derivative	8
	1.4	A further example of differential invariants:	
		projective curvature	13
	1.5	The Schwarzian derivative as a cocycle	
		of $Diff(\mathbb{RP}^1)$	18
	1.6	Virasoro algebra: the coadjoint representation	21
2	The geometry of the projective line		
	2.1	Invariant differential operators on \mathbb{RP}^1	26
	2.2	Curves in \mathbb{RP}^n and linear differential operators	29
	2.3	Homotopy classes of non-degenerate curves	35
	2.4	Two differential invariants of curves: projective	
		curvature and cubic form	40
	2.5	Projectively equivariant symbol calculus	42
3	The algebra of the projective line and		
	cohomology of $Diff(S^1)$		47
	3.1	Transvectants	48
	3.2	First cohomology of $Diff(S^1)$ with coefficients in	
		differential operators	52
	3.3	Application: geometry of differential operators on \mathbb{RP}^1	57
	3.4	Algebra of tensor densities on S^1	62
	3.5	Extensions of $Vect(S^1)$ by the modules $F_{\lambda}(S^1)$	66

vi Contents

4	Vertices of projective curves		69			
	4.1	Classic four-vertex and six-vertex theorems	69			
	4.2	Ghys' theorem on zeroes of the Schwarzian derivative				
		and geometry of Lorentzian curves	76			
	4.3	Barner's theorem on inflections of projective curves	80			
	4.4	Applications of strictly convex curves	85			
	4.5	Discretization: geometry of polygons, back to				
		configurations	90			
	4.6	Inflections of Legendrian curves and singularities				
		of wave fronts	97			
5	Proj	ective invariants of submanifolds	103			
	5.1	Surfaces in \mathbb{RP}^3 : differential invariants and				
		local geometry	104			
	5.2	Relative, affine and projective differential geometry of				
		hypersurfaces	116			
	5.3	Geometry of relative normals and exact transverse				
		line fields	123			
	5.4	Complete integrability of the geodesic flow on the				
		ellipsoid and of the billiard map inside the ellipsoid	133			
	5.5	Hilbert's fourth problem	141			
	5.6	Global results on surfaces	148			
6	Proj	jective structures on smooth manifolds	153			
	6.1	Definitions, examples and main properties	153			
	6.2	Projective structures in terms of differential forms	159			
	6.3	Tensor densities and two invariant differential operators	161			
	6.4	Projective structures and tensor densities	164			
	6.5	Moduli space of projective structures in dimension 2,				
		by V. Fock and A. Goncharov	169			
7	Mul	Multi-dimensional Schwarzian derivatives and				
	diffe	erential operators	179			
	7.1	Multi-dimensional Schwarzian with coefficients in				
		(2, 1)-tensors	179			
	7.2	Projectively equivariant symbol calculus in any				
		dimension	185			
	7.3	Multi-dimensional Schwarzian as a differential operator	191			
	7.4	Application: classification of modules $\mathcal{D}^2_{\lambda}(M)$ for an				
		arbitrary manifold	194			

Contents vii

7.5	Poisson algebra of tensor densities on a contact			
	manifold	197		
7.6	Lagrange Schwarzian derivative	205		
Appendices				
A.1	Five proofs of the Sturm theorem	214		
A.2	The language of symplectic and contact geometry	217		
A.3	The language of connections	221		
A.4	The language of homological algebra	223		
A.5	Remarkable cocycles on groups of diffeomorphisms	226		
A.6	The Godbillon-Vey class	229		
A.7	The Adler-Gelfand-Dickey bracket and			
	infinite-dimensional Poisson geometry	232		
References		236		
Index		247		