Eberhard Zeidler

Nonlinear Functional Analysis and its Applications

II/A: Linear Monotone Operators

Translated by the Author and by Leo F. Boron†

With 45 Illustrations

Eberhard Zeidler Max-Planck-Institut fuer Mathematik in den Naturwissenschaften Leipzig Inselstrasse 22-26 Leipzig, Germany D-04103 Leo F. Boron†
Department of Mathematics
University of Idaho
Moscow, ID 83843
U.S.A.

Mathematics Subject Classification (1991): 46xx

Library of Congress Cataloging in Publication Data (Revised for vol. 2 pts. A-B) Zeidler, Eberhard

Vol. 2, pts. A-B: Translated by the author and

Leo L. Boron.

Vol. 3: Translated by Leo L. Boron.

Vol. 4: Translated by Juergen Quandt.

Includes bibliographies and indexes.

Contents: 1. Fixed point theorems — 2. pt. A. Linear monotone operators. Pt. B Nonlinear operators — [etc.]

— 4. Applications to mathematical physics.

1. Non linear functional analysis. I. Title.

OA321.5.Z4513 1985 515.7 83-20455

Printed on acid-free paper.

Previous edition. *Vorlesungen über nichtlineare Funktionalanalysis*, Vols. 1–III, published by BSB B. G. Teubner Verlagsgesellschaft. 7010 Leipzig, Sternwartenstrasse 8. Deutsche Demokratische Republik.

© 1990 by Springer Science+Business Media New York

Originally published by Springer-Verlag New York Inc. in 1990

Softcover reprint of the hardcover 1st edition 1990

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

Typeset by Asco Trade Typesetting Ltd., Hong Kong.

98765432

ISBN 978-1-4612-6971-7 ISBN 978-1-4612-0985-0 (eBook) DOI 10.1007/978-1-4612-0985-0

SPIN 10669296

Contents (Part II/A)

Preface	e to Part II/A	vii
INTR	ODUCTION TO THE SUBJECT	1
CHAP	TER 18	
Variati	onal Problems, the Ritz Method, and	
	a of Orthogonality	15
§18.1.		17
§18.2.		19
§18.3.	The First Boundary Value Problem and the Ritz Method	21
§18.4.		
-	the Ritz Method	28
§18.5.	Eigenvalue Problems and the Ritz Method	32
§18.6.	The Hölder Inequality and its Applications	35
§18.7.	The History of the Dirichlet Principle and Monotone Operators	40
§18.8.	The Main Theorem on Quadratic Minimum Problems	56
§18.9.	The Inequality of Poincaré-Friedrichs	59
§18.10.	The Functional Analytic Justification of the Dirichlet Principle	60
§18.11.	The Perpendicular Principle, the Riesz Theorem, and	
	the Main Theorem on Linear Monotone Operators	64
§18.12.	The Extension Principle and the Completion Principle	70
§18.13.	Proper Subregions	71
§18.14.	The Smoothing Principle	72
§18.15.	The Idea of the Regularity of Generalized Solutions and	
	the Lemma of Weyl	78
§18.16.	The Localization Principle	79
§18.17.	Convex Variational Problems, Elliptic Differential Equations,	
	and Monotonicity	81

xiii

xiv Contents (Part II/A)

§18.18.	The General Euler-Lagrange Equations	85
§18.19.	The Historical Development of the 19th and 20th Problems of	
	Hilbert and Monotone Operators	86
§18.20.	Sufficient Conditions for Local and Global Minima and	
	Locally Monotone Operators	93
СНАР	TER 19	
	alerkin Method for Differential and Integral Equations,	
	edrichs Extension, and the Idea of Self-Adjointness	101
§19.1.	Elliptic Differential Equations and the Galerkin Method	108
§19.2.	Parabolic Differential Equations and the Galerkin Method	111
§19.3.	Hyperbolic Differential Equations and the Galerkin Method	113
§19.4.	Integral Equations and the Galerkin Method	115
§19.5.	Complete Orthonormal Systems and Abstract Fourier Series	116
§19.6.	Eigenvalues of Compact Symmetric Operators	
	(Hilbert-Schmidt Theory)	119
§19.7.	Proof of Theorem 19.B	121
§19.8.	Self-Adjoint Operators	124
§19.9.	The Friedrichs Extension of Symmetric Operators	126
§19.10.	Proof of Theorem 19.C	129
§19.11.	Application to the Poisson Equation	132
§19.12.	Application to the Eigenvalue Problem for the Laplace Equation	134
§19.13.	The Inequality of Poincaré and the Compactness	
	Theorem of Rellich	135
§19.14.	Functions of Self-Adjoint Operators	138
§19.15.	Application to the Heat Equation	141
§19.16.	Application to the Wave Equation	143
§19.17.	Semigroups and Propagators, and Their Physical Relevance	145
§19.18.	Main Theorem on Abstract Linear Parabolic Equations	153
§19.19.	Proof of Theorem 19.D	155
§19.20.	Monotone Operators and the Main Theorem on	
	Linear Nonexpansive Semigroups	159
§19.21.	The Main Theorem on One-Parameter Unitary Groups	160
§19.22.	Proof of Theorem 19.E	162
§19.23.	Abstract Semilinear Hyperbolic Equations	164
§19.24.	Application to Semilinear Wave Equations	166
§19.25.	The Semilinear Schrödinger Equation	167
§19.26.	Abstract Semilinear Parabolic Equations, Fractional Powers of	160
§19.27.	Operators, and Abstract Sobolev Spaces Application to Semilinear Parabolic Equations	168
§19.27. §19.28.	Proof of Theorem 19.I	171 171
§19.28. §19.29.	Five General Uniqueness Principles and Monotone Operators	174
§19.29.	A General Existence Principle and Linear Monotone Operators	175
g17.30.	A General Existence i finciple and Emeal Monotone Operators	173
	TER 20	
	nce Methods and Stability	192
§20.1.	Consistency, Stability, and Convergence	195
§20.2.	Approximation of Differential Quotients	199

Contents (Part II/A) XV

§20.3.	Application to Boundary Value Problems for	
	Ordinary Differential Equations	200
§20.4.	Application to Parabolic Differential Equations	203
§20.5.	Application to Elliptic Differential Equations	208
§20.6.	The Equivalence Between Stability and Convergence	210
§20.7.	The Equivalence Theorem of Lax for Evolution Equations	211
	•	
LINE	AR MONOTONE PROBLEMS	225
CII A D	TED 24	
	TER 21	
	ary Tools and the Convergence of the Galerkin	220
	d for Linear Operator Equations	229
§21.1.	Generalized Derivatives	231
§21.2.	Sobolev Spaces	235
§21.3.	The Sobolev Embedding Theorems	237
§21.4.	Proof of the Sobolev Embedding Theorems	241
§21.5.	Duality in B-Spaces	251
§21.6.	Duality in H-Spaces	253
§21.7.	The Idea of Weak Convergence	255
§21.8.	The Idea of Weak* Convergence	260
§21.9.	Linear Operators	261
§21.10.	Bilinear Forms	262
§21.11.	Application to Embeddings	265
§21.12.	Projection Operators	265
§21.13.	Bases and Galerkin Schemes	271
§21.14.	Application to Finite Elements	273
§21.15.	Riesz-Schauder Theory and Abstract Fredholm Alternatives	275
§21.16.	The Main Theorem on the Approximation-Solvability of Linear	
	Operator Equations, and the Convergence of the Galerkin Method	279
§21.17.	Interpolation Inequalities and a Convergence Trick	283
§21.18.	Application to the Refined Banach Fixed-Point Theorem and	
	the Convergence of Iteration Methods	285
§21.19.	The Gagliardo-Nirenberg Inequalities	286
§21.20.	The Strategy of the Fourier Transform for Sobolev Spaces	290
§21.21.	Banach Algebras and Sobolev Spaces	292
§21.22.	Moser-Type Calculus Inequalities	294
§21.23.	Weakly Sequentially Continuous Nonlinear Operators on	
	Sobolev Spaces	296
СНАР	TER 22	
	t Space Methods and Linear Elliptic Differential Equations	314
§22.1.	Main Theorem on Quadratic Minimum Problems and the	
3	Ritz Method	320
§22.2.	Application to Boundary Value Problems	325
§22.3.	The Method of Orthogonal Projection, Duality, and a posteriori	
3-2.0.	Error Estimates for the Ritz Method	335
§22.4.		337

xvi Contents (Part II/A)

§22.5.	Main Theorem on Linear Strongly Monotone Operators and	
	the Galerkin Method	339
§22.6.	Application to Boundary Value Problems	345
§22.7.	Compact Perturbations of Strongly Monotone Operators,	
	Fredholm Alternatives, and the Galerkin Method	347
§22.8.	Application to Integral Equations	349
§22.9.	Application to Bilinear Forms	350
§22.10.	Application to Boundary Value Problems	351
§22.11.	Eigenvalue Problems and the Ritz Method	352
§22.12.	Application to Bilinear Forms	357
§22.13.	Application to Boundary-Eigenvalue Problems	361
§22.14.	Gårding Forms	364
§22.15.	The Gårding Inequality for Elliptic Equations	366
§22.16.	The Main Theorems on Gårding Forms	369
§22.17.	Application to Strongly Elliptic Differential Equations of Order 2m	371
§22.18.	Difference Approximations	374
§22.19.	Interior Regularity of Generalized Solutions	376
§22.20.	Proof of Theorem 22.H	378
§22.21.	Regularity of Generalized Solutions up to the Boundary	383
§22.22.	Proof of Theorem 22.I	384
СНАР	TER 23	
Hilbert	Space Methods and Linear Parabolic Differential Equations	402
	Particularities in the Treatment of Parabolic Equations	402
§23.2.	The Lebesgue Space $L_p(0, T; X)$ of Vector-Valued Functions	406
§23.3.	The Dual Space to $L_p(0, T; X)$	410
§23.4.	Evolution Triples	416
§23.5.	Generalized Derivatives	417
§23.6.	The Sobolev Space $W_p^1(0, T; V, H)$	422
§23.7.	Main Theorem on First-Order Linear Evolution Equations and	
· ·	the Galerkin Method	423
§23.8.	Application to Parabolic Differential Equations	426
§23.9.	Proof of the Main Theorem	430
СНАР	TER 24	
	Space Methods and Linear Hyperbolic	
	· · · · · · · · · · · · · · · · · · ·	450
	ntial Equations	452
§24.1.	Main Theorem on Second-Order Linear Evolution Equations	453
6242	and the Galerkin Method	453
§24.2.	11 1	456
924.3.	Proof of the Main Theorem	459