ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Absolute Measurable Spaces

TOGO NISHIURA

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521875561

© T. Nishiura 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-87556-1 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface		<i>page</i> ix
Ac	cknowledgements	xiii
1	The absolute property	1
	1.1 Absolute measurable spaces	1
	1.2 Absolute null spaces	7
	1.3 Existence of absolute null spaces	10
	1.4 Grzegorek's cardinal number $\kappa_{\rm G}$	18
	1.5 More on existence of absolute null spaces	24
	1.6 Comments	26
	Exercises	28
2	The universally measurable property	30
	2.1 Universally measurable sets	31
	2.2 Positive measures	35
	2.3 Universally measurable maps	37
	2.4 Symmetric difference of Borel and null sets	39
	2.5 Early results	42
	2.6 The homeomorphism group of [0, 1]	43
	2.7 The group of \mathfrak{B} -homeomorphisms	46
	2.8 Comments	49
	Exercises	52
3	The homeomorphism group of X	53
	3.1 A metric for $HOMEO(X)$	54
	3.2 General properties	56
	3.3 One-dimensional spaces	57
	3.4 The Oxtoby–Ulam theorem	61
	3.5 <i>n</i> -dimensional manifolds	73
	3.6 The Hilbert cube	76
	3.7 Zero-dimensional spaces	82

	3.8	Other examples	88
	3.9	Comments	90
		Exercises	97
4	Rea	al-valued functions	99
	4.1	A solution to Goldman's problem	100
	4.2	Differentiability and B-maps	103
	4.3	Radon-Nikodym derivative and Oxtoby-Ulam theorem	105
	4.4	Zahorski spaces	112
	4.5	Bruckner-Davies-Goffman theorem	115
	4.6	Change of variable	126
	4.7	Images of Lusin sets	128
	4.8	Comments	130
		Exercises	134
_	II.e.		126
3	Ha	usdorn measure and dimension	136
	5.1	Universally null sets in metric spaces	136
	5.2	A summary of Hausdorff dimension theory	137
	5.3		139
	5.4	Zinduika s theorem	143
	5.5	Analytic sets in \mathbb{R}^n	146
	5.6	Zindulka's opaque sets	151
	5.7	Comments	154
		Exercises	156
6	Ma	rtin axiom	157
	6.1	CH and universally null sets: a historical tour	157
	6.2	Absolute null space and cardinal numbers	165
	6.3	Consequences of the Martin axiom	168
	6.4	Topological dimension and MA	171
	6.5	Comments	173
		Exercises	178
Δr	nen	dix A Preliminary material	179
1	A 1	Complete metric spaces	179
	A 2	Borel measurable maps	182
	A 3	Totally imperfect spaces	185
	A 4	Complete Borel measure spaces	186
	A 5	The sum of Borel measures	100
	A 6	Zahorski snaces	192
	A 7	Purves's theorem	195
	A 8	Comments	203
	11.0	Exercises	203
			205

Contents

vi

Contents	vii	
Appendix B Probability theoretic approach	204	
B.1 Basic definitions	204	
B.2 Separable metrizability	206	
B.3 Shortt's observation	208	
B.4 Lusin measurable space	210	
B.5 Comments	212	
Exercises	213	
Appendix C Cantor spaces	214	
C.1 Closed and open sets	215	
C.2 A metric for $k^{\mathbb{N}}$	217	
C.3 Bernoulli measures	219	
C.4 Uniform Bernoulli distribution	220	
C.5 Binomial Bernoulli distribution	221	
C.6 Linear ordering of $\{0, 1\}^{\mathbb{N}}$ and good measures	230	
C.7 Refinable numbers	233	
C.8 Refinable numbers and good measures	239	
C.9 Comments	240	
Exercises	242	
Appendix D Dimensions and measures	244	
D.1 Topological dimension	244	
D.2 Measure theoretical dimension	246	
D.3 Zindulka's dimension theorem	249	
D.4 Geometric measure theory	253	
D.5 Marstrand's theorem	255	
Exercises	257	
Bibliography	258	
Notation index	267	
Author index	270	
Subject index		