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Preface 

Up to a certain time the attention of mathematicians was concentrated on the 
study of individual objects, for example, specific elementary functions or curves 
defined by special equations. With the creation of the method of Fourier series, 
which allowed mathematicians to work with 'arbitrary' functions, the individual 
approach was replaced by the 'class' approach, in which a particular function is 
considered only as an element of some 'function space'. More or less simultane­
ously the development of geometry and algebra led to the general concept of a 
linear space, while in analysis the basic forms of convergence for series of 
functions were identified: uniform, mean square, pointwise and so on. It turns 
out, moreover, that a specific type of convergence is associated with each linear 
function space, for example, uniform convergence in the case of the space of 
continuous functions on a closed interval. It was only comparatively recently 
that in this connection the general idea of a linear topological space (L TS)l was 
formed; here the algebraic structure is compatible with the topological structure 
in the sense that the basic operations (addition and multiplication by a scalar) 
are continuous. Included in this scheme are spaces which, historically, had 
appeared earlier, namely Frechet spaces (metric with a complete translation 
invariant metric), Banach spaces (complete norm able) and finally the class which 
is the most special of all but at the same time the most important for applications, 
Hilbert spaces, whose topology and geometry are defined in a manner which 
goes back essentially to Euclid - the assignment of a scalar product of vectors. 

Using contemporary formal language we can say that LTSs form a cate­
gory in which continuous homomorphisms, or continuous linear operators (we 
usually apply the last term to homomorphisms of a space into itself), serve as 
morphisms. Specific classical examples oflinear operators are differentiation and 
integration or, in a more general form, differential and integral operators. As a 
rule, integral operators are continuous but this cannot be said of differential 
operators. Thanks to the construction of a sufficiently general theory of linear 
operators it became possible to include the latter case. 

The story was repeated at the operator level. At first mathematicians studied 
individual operators but later on it turned out to be useful and necessary to pass 
to classes. First and foremost in this connection, multiplication of operators (as 
a rule non-commutative) went out and algebras of operators appeared. Moreover 
many natural function spaces are also algebras (commutative, of course: typical 
multiplication is the usual one, i.e. pointwise, or its Fourier equivalent - convo­
lution on an Abelian group). With regard to topology all these situations are 
covered by the concept of a topological algebra but with a considerable excess 
of generality. A satisfactory approach is achieved in the narrower setting of 

1 Translator's note. I will use L TSs for the plural and write an L TS rather than the correct a L TS for 
the indefinite form since the former reads more smoothly. Other abbreviations of similar type will 
be treated in the same way. 
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Banach algebras which have proved to be extremely fruitful in harmonic analysis, 
in representation theory, in approximation theory and so on. 

The development of functional analysis ran its course under the powerful 
influence of theoretical and mathematical physics. Here we may mention, for 
example, spectral theory, which evolved from wave mechanics, the technique of 
generalised functions (or distributions), whose construction and widespread 
introduction was preceded by the systematic practice of using the b-function in 
quantum mechanics, ergodic theory, whose fundamental problems were posed 
by statistical physics, the investigation of operator algebras in connection with 
applications to quantum field theory and statistical physics and so on. At the 
present time the ideas, terminology and methods of functional analysis have 
penetrated deeply not only into natural science but also into such applied 
disciplines as numerical mathematics and mathematical economics. 

In the introductory volume presented below the classical sources offunctional 
analysis are traced, its basic core is described (with a sufficient degree of generali­
ty but at the same time with a series of concrete examples and applications) and 
its principal branches are outlined. An expanded account of a series of specific 
sections will be given in the subsequent volumes, while certain questions closely 
connected with linear functional analysis have already been elucidated in previ­
ous volumes of the present series. We only touch fragmentarily upon non-linear 
aspects. 

The general plan of the volume was discussed with R.Y. Gamkrelidze and N.K. 
Nikol'skij and individual topics with A.M. Vershik, E.A. Gorin, M.Yu. Lyubich, 
A.S. Markus, L.A. Pastur and V.A. Tkachenko. Valuable information on certain 
questions which are elucidated in the volume was kindly provided to the author 
by V.M. Borok, Yu.A. Brudnyj, V.M. Kadets, M.1. Kadets, V.Eh. Katsnel'son 
and Yu.1. Lyubarskij. The author offers profound thanks to all the named 
individuals. He is also most grateful to Dr. Ian Tweddle for his translation of the 
work into English. 


