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Introduction and Dedication

This book is dedicated to Paul Erdős, the greatest mathematician I
have ever known, whom it has been my rare privilege to consider
colleague, collaborator, and dear friend.

I like to think that Erdős, whose mathematics embodied the princi-
ples which have impressed themselves upon me as defining the true
character of mathematics, would have appreciated this little book
and heartily endorsed its philosophy. This book proffers the thesis
that mathematics is actually an easy subject and many of the famous
problems, even those in number theory itself, which have famously
difficult solutions, can be resolved in simple and more direct terms.

There is no doubt a certain presumptuousness in this claim. The
great mathematicians of yesteryear, those working in number the-
ory and related fields, did not necessarily strive to effect the simple
solution. They may have felt that the status and importance of mathe-
matics as an intellectual discipline entailed, perhaps indeed required,
a weighty solution. Gauss was certainly a wordy master and Euler
another. They belonged to a tradition that undoubtedly revered math-
ematics, but as a discipline at some considerable remove from the
commonplace. In keeping with a more democratic concept of intelli-
gence itself, contemporary mathematics diverges from this somewhat
elitist view. The simple approach implies a mathematics generally
available even to those who have not been favored with the natural
endowments, nor the careful cultivation of an Euler or Gauss.
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viii Introduction and Dedication

Such an attitude might prove an effective antidote to a generally
declining interest in pure mathematics. But it is not so much as incen-
tive that we proffer what might best be called “the fun and games”
approach to mathematics, but as a revelation of its true nature. The
insistence on simplicity asserts a mathematics that is both “magi-
cal” and coherent. The solution that strives to master these qualities
restores to mathematics that element of adventure that has always
supplied its peculiar excitement. That adventure is intrinsic to even
the most elementary description of analytic number theory.

The initial step in the investigation of a number theoretic item
is the formulation of “the generating function”. This formulation
inevitably moves us away from the designated subject to a consider-
ation of complex variables. Having wandered away from our subject,
it becomes necessary to effect a return. Toward this end “The Cauchy
Integral” proves to be an indispensable tool. Yet it leads us, inevitably,
further afield from all the intricacies of contour integration and they,
in turn entail the familiar processes, the deformation and estimation
of these contour integrals.

Retracing our steps we find that we have gone from number theory
to function theory, and back again. The journey seems circuitous, yet
in its wake a pattern is revealed that implies a mathematics deeply
inter-connected and cohesive.


