Contents

mtroat	iction	1
§1.	Physical problems leading to nonlinear nonlocal equations	1
§2.	Brief review of the content of this book	6
Снарті	ER 1. Simplest Properties of Solutions of Nonlinear Nonlocal	
	Equations	11
§1.	Conservation laws. Solitary waves	11
§2.	Wave peaking	14
§3.	Breaking of waves in the case of a monotone kernel	18
Снарті	ER 2. The Cauchy Problem for the Whitham Equation	29
§1.	Introduction	29
§2.	The existence of a classical solution for the Cauchy problem on a finite time-interval	31
§3 .	The existence of a global in time solution	40
	Smoothing of solutions	43
-	Breaking of waves for a conservative or dissipative operator of order	
3	less than 3/5	47
§ 6 .	Breaking of waves for arbitrary operators of order less than 2/3	51
	Proof of Theorem 10	60
Снарті	ER 3. The Periodic Problem	65
§1.	Introduction	65
§2.	Breaking of waves for a conservative or dissipative operator \mathbb{K} of	65
6.3	order $\alpha < 3/5$	74
33.	On the existence of a global solution of the Cauchy problem	76
	Smoothing of solutions of the Cauchy problem The problem with a week interaction	84
33.	The periodic problem with a weak interaction	04
Снарті	R 4. The System of Equations of Surface Waves	89
	Conservation laws	89
§2.	The Cauchy problem for the system of equations of surface waves	
	with a regular operator	91
§ 3 .	The Cauchy problem for the system of equations of surface waves	
	with a dissipative or conservative operator	97
ξ4.	Breaking of waves	101

viii CONTENTS

§5. Exi	stence of a global solution of the Cauchy problem	125
	oothing of the initial perturbations	126
	oothing of initial perturbations from L_2	133
§8. The	e Cauchy problem for the system of equations for surface waves	
wit	h weak nonlocal interaction	138
	Generalized Solutions	141
-	roduction	141
	e dissipative Whitham equation	143
	e conservative Whitham equation	145
	e shallow water equation	147
	nlinear nonlocal Schrödinger equation	150
36. The	e system of surface waves	153
Chapter 6.	The Asymptotics as $t \to \infty$ of Solutions of the Generalized	
01 .	Kolmogorov-Petrovskii-Piskunov Equation	159
-	roduction	159
	of of the theorem	160
§3. Coi	mputation of the functions $\Phi_{\mathscr{N}}(p)$	164
Chapter 7.	Asymptotics of Solutions of the Whitham Equation for Large	
C1 T .	Times	179
-	roduction	179
	hnical lemmas	180
	of of the theorem	183
§4. Cor	nputation of the numbers $\Phi_{\mathcal{N}}$	190
§5. Asy	emptotics of solutions of the KDV equation	194
Chapter 8.	Asymptotics as $t \to \infty$ of Solutions of the Nonlinear Nonlocal Schrödinger Equation	209
ξ1. Intr	roduction	209
	hnical lemmas	210
	of of Theorem 1	212
	nputation of the numbers $\Phi_{\mathscr{N}}$	217
§5. Cor	nputation of the asymptotics for the Landau-Ginzburg	217
equ	ation	227
	mptotics of solutions for periodic problem of the nonlinear	221
Sch	rödinger equation for large times	229
Chapter 9.	Asymptotics of Solutions for a System of Equations of Surface	
	Waves for Large Times	235
§1. Intr	oduction	235
§2. Len		238
	of of the theorem	239
	nputation of the vectors $\Phi_{\mathcal{N}}$	252
Chapter 10	. The Step-Decaying Problem for the Korteweg-de Vries-Burgers	
	Equation Equation	261
§1. Intr	oduction	261
	t theorem	262

-c	\cap	ıπ	E N	ITS

ix

§3. Second theorem	267
§4. A lemma	271
§5. The step-decaying problem for the Kuramoto-Sivashinsky	
equation	276
References	
Supplementary References	288