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Preface

Arithmetic is where numbers run across your mind looking for
the answer.

Arithmetic is like numbers spinning in your head faster and
faster until you blow up with the answer.

KABOOM!!!
Then you sit back down and begin the next problem.

Alexander Nathanson [99]

This book, Elementary Methods in Number Theory, is divided into three
parts.

Part I, “A first course in number theory,” is a basic introduction to el-
ementary number theory for undergraduate and graduate students with
no previous knowledge of the subject. The only prerequisites are a little
calculus and algebra, and the imagination and perseverance to follow a
mathematical argument. The main topics are divisibility and congruences.
We prove Gauss’s law of quadratic reciprocity, and we determine the moduli
for which primitive roots exist. There is an introduction to Fourier anal-
ysis on finite abelian groups, with applications to Gauss sums. A chapter
is devoted to the abc conjecture, a simply stated but profound assertion
about the relationship between the additive and multiplicative properties
of integers that is a major unsolved problem in number theory.

The “first course” contains all of the results in number theory that are
needed to understand the author’s graduate texts, Additive Number Theory:
The Classical Bases [104] and Additive Number Theory: Inverse Problems
and the Geometry of Sumsets [103].
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The second and third parts of this book are more difficult than the “first
course,” and require an undergraduate course in advanced calculus or real
analysis.

Part II is concerned with prime numbers, divisors, and other topics in
multiplicative number theory. After deriving properties of the basic arith-
metic functions, we obtain important results about divisor functions, and
we prove the classical theorems of Chebyshev and Mertens on the distribu-
tion of prime numbers. Finally, we give elementary proofs of two of the most
famous results in mathematics, the prime number theorem, which states
that the number of primes up to x is asymptotically equal to x/ log x, and
Dirichlet’s theorem on the infinitude of primes in arithmetic progressions.

Part III, “Three problems in additive number theory,” is an introduction
to some classical problems about the additive structure of the integers. The
first additive problem is Waring’s problem, the statement that, for every
integer k ≥ 2, every nonnegative integer can be represented as the sum
of a bounded number of kth powers. More generally, let f(x) = akx

k +
ak−1x

k−1 + · · ·+a0 be an integer-valued polynomial with ak > 0 such that
the integers in the set A(f) = {f(x) : x = 0, 1, 2, . . .} have no common
divisor greater than one. Waring’s problem for polynomials states that
every sufficiently large integer can be represented as the sum of a bounded
number of elements of A(f).

The second additive problem is sums of squares. For every s ≥ 1 we
denote by Rs(n) the number of representations of the integer n as a sum
of s squares, that is, the number of solutions of the equation

n = x2
1 + · · · + x2

s

in integers x1, . . . , xs. The shape of the function Rs(n) depends on the
parity of s. In this book we derive formulae for Rs(n) for certain even
values of s, in particular, for s = 2, 4, 6, 8, and 10.

The third additive problem is the asymptotics of partition functions.
A partition of a positive integer n is a representation of n in the form
n = a1 + · · · + ak, where the parts a1, . . . , ak are positive integers and
a1 ≥ · · · ≥ ak. The partition function p(n) counts the number of partitions
of n. More generally, if A is any nonempty set of positive integers, the
partition function pA(n) counts the number of partitions of n with parts
belonging to the set A. We shall determine the asymptotic growth of p(n)
and, more generally, of pA(n) for any set A of integers of positive density.

This book contains many examples and exercises. By design, some of
the exercises require old-fashioned manipulations and computations with
pencil and paper. A few exercises require a calculator. Number theory, after
all, begins with the positive integers, and students should get to know and
love them.

This book is also an introduction to the subject of “elementary methods
in analytic number theory.” The theorems in this book are simple state-
ments about integers, but the standard proofs require contour integration,
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modular functions, estimates of exponential sums, and other tools of com-
plex analysis. This is not unfair. In mathematics, when we want to prove a
theorem, we may use any method. The rule is “no holds barred.” It is OK
to use complex variables, algebraic geometry, cohomology theory, and the
kitchen sink to obtain a proof. But once a theorem is proved, once we know
that it is true, particularly if it is a simply stated and easily understood
fact about the natural numbers, then we may want to find another proof,
one that uses only “elementary arguments” from number theory. Elemen-
tary proofs are not better than other proofs, nor are they necessarily easy.
Indeed, they are often technically difficult, but they do satisfy the aesthetic
boundary condition that they use only arithmetic arguments.

This book contains elementary proofs of some deep results in number
theory. We give the Erdős-Selberg proof of the prime number theorem,
Linnik’s solution of Waring’s problem, Liouville’s still mysterious method
to obtain explicit formulae for the number of representations of an integer
as the sum of an even number of squares, and Erdős’s method to obtain
asymptotic estimates for partition functions. Some of these proofs have not
previously appeared in a text. Indeed, many results in this book are new.

Number theory is an ancient subject, but we still cannot answer the
simplest and most natural questions about the integers. Important, easily
stated, but still unsolved problems appear throughout the book. You should
think about them and try to solve them.

Melvyn B. Nathanson1

Maplewood, New Jersey
November 1, 1999

1Supported in part by grants from the PSC-CUNY Research Award Program and the
NSA Mathematical Sciences Program. This book was completed while I was visiting the
Institute for Advanced Study in Princeton, and I thank the Institute for its hospitality.
I also thank Jacob Sturm for many helpful discussions about parts of this book.



Notation and Conventions

We denote the set of positive integers (also called the natural numbers) by
N and the set of nonnegative integers by N0. The integer, rational, real,
and complex numbers are denoted by Z, Q, R, and C, respectively. The
absolute value of z ∈ C is |z|. We denote by Zn the group of lattice points
in the n-dimensional Euclidean space Rn.

The integer part of the real number x, denoted by [x], is the largest
integer that is less than or equal to x. The fractional part of x is denoted
by {x}. Then x = [x] + {x}, where [x] ∈ Z, {x} ∈ R, and 0 ≤ {x} < 1. In
computer science, the integer part of x is often called the floor of x, and
denoted by �x�. The smallest integer that is greater than or equal to x is
called the ceiling of x and denoted by �x�.

We adopt the standard convention that an empty sum of numbers is
equal to 0 and an empty product is equal to 1. Similarly, an empty union
of subsets of a set X is equal to the empty set, and an empty intersection
is equal to X.

We denote the cardinality of the set X by |X|. The largest element in a
finite set of numbers is denoted by max(X) and the smallest is denoted by
min(X).

Let a and d be integers. We write d|a if d divides a, that is, if there exists
an integer q such that a = dq. The integers a and b are called congruent
modulo m, denoted by a ≡ b (mod m), if m divides a− b.

A prime number is an integer p > 1 whose only divisors are 1 and p.
The set of prime numbers is denoted by P, and pk is the kth prime. Thus,
p1 = 2, p2 = 3, . . . , p11 = 31, . . . . Let p be a prime number. We write pr‖n
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if pr is the largest power of p that divides the integer n, that is, pr divides
n but pr+1 does not divide n.

The greatest common divisor and the least common multiple of the inte-
gers a1, . . . , ak are denoted by (a1, . . . , ak) and [a1, . . . , ak], respectively. If
A is a nonempty set of integers, then gcd(A) denotes the greatest common
divisor of the elements of A.

The principle of mathematical induction states that if S(k) is some state-
ment about integers k ≥ k0 such that S(k0) is true and such that the truth
of S(k−1) implies the truth of S(k), then S(k) holds for all integers k ≥ k0.
This is equivalent to the minimum principle: A nonempty set of integers
bounded below contains a smallest element.

Let f be a complex-valued function with domain D, and let g be a
function on D such that g(x) > 0 for all x ∈ D. We write f 
 g or
f = O(g) if there exists a constant c > 0 such that |f(x)| ≤ cg(x) for
all x ∈ D. Similarly, we write f � g if there exists a constant c > 0
such that |f(x)| ≥ cg(x) for all x ∈ D. For example, f � 1 means that
f(x) is uniformly bounded away from 0, that is, there exists a constant
c > 0 such that |f(x)| ≥ c for all x ∈ D. We write f 
k,�,... g if there
exists a positive constant c that depends on the variables k, �, . . . such that
|f(x)| ≤ cg(x) for all x ∈ D. We define f �k,�,... g similarly. The functions
f and g are called asymptotic as x approaches a if limx→a f(x)/g(x) = 1.
Positive-valued functions f and g with domain D have the same order of
magnitude if f 
 g 
 f , or equivalently, if there exist positive constants c1
and c2 such that c1 ≤ f(x)/g(x) ≤ c2 for all x ∈ D. The counting function
of a set A of integers counts the number of positive integers in A that do
not exceed x, that is,

A(x) =
∑
a∈A

1≤a≤x

1.

Using the counting function, we can associate various densities to the set
A. The Shnirel’man density of A is

σ(A) = inf
n→∞

A(n)
n

.

The lower asymptotic density of A is

dL(A) = lim inf
n→∞

A(n)
n

.

The upper asymptotic density of A is

dU (A) = lim sup
n→∞

A(n)
n

.

If dL(A) = dU (A), then d(A) = dL(A) is called the asymptotic density of
A, and

d(A) = lim
n→∞

A(n)
n

.
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Let A and B be nonempty sets of integers and d ∈ Z. We define
the sumset

A + B = {a + b : a ∈ A, b ∈ B},
the difference set

A−B = {a− b : a ∈ A, b ∈ B},

the product set
AB = {ab : a ∈ A, b ∈ B},

and the dilation
d ∗A = {d}A = {da : a ∈ A}.

The sets A and B eventually coincide, denoted by A ∼ B, if there exists
an integer n0 such that n ∈ A if and only if n ∈ B for all n ≥ n0.

We use the following arithmetic functions:

vp(n) the exponent of the highest power of p that divides n
ϕ(n) Euler phi function
µ(n) Möbius function
d(n) the number of divisors of n
σ(n) the sum of the divisors of n
π(x) the number of primes not exceeding x
ϑ(x), ψ(x) Chebyshev’s functions
�(n) log n if n is prime and 0 otherwise
ω(n) the number of distinct prime divisors of n
Ω(n) the total number of prime divisors of n
L(n) logn, the natural logarithm of n
Λ(n) von Mangoldt function
Λ2(n) generalized von Mangoldt function
1(n) 1 for all n
δ(n) 1 if n = 1 and 0 if n ≥ 2

A ring is always a ring with identity. We denote by R× the multiplicative
group of units of R. A commutative ring R is a field if and only if R× =
R \ {0}. If f(t) is a polynomial with coefficients in the ring R, then N0(f)
denotes the number of distinct zeros of f(t) in R. We denote by Mn(R) the
ring of n× n matrices with coefficients in R.

In the study of Liouville’s method, we use the symbol

{f(�)}n=�2 =
{

0 if n is not a square,
f(�) if n = �2, � ≥ 0.
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