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Preface 

[Hilbert's] style has not the terseness of many of our modem authors 
in mathematics, which is based on the assumption that printer's labor 
and paper are costly but the reader's effort and time are not. 

H. Weyl [143] 

The purpose of this book is to describe the classical problems in additive number 
theory and to introduce the circle method and the sieve method, which are the 
basic analytical and combinatorial tools used to attack these problems. This book 
is intended for students who want to lelţIll additive number theory, not for experts 
who already know it. For this reason, proofs include many "unnecessary" and 
"obvious" steps; this is by design. 

The archetypical theorem in additive number theory is due to Lagrange: Every 
nonnegative integer is the sum of four squares. In general, the set A of nonnegative 
integers is called an additive basis of order h if every nonnegative integer can be 
written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem 
is the statement that the squares are a basis of order four. The set A is called a 
basis offinite order if A is a basis of order h for some positive integer h. Additive 
number theory is in large part the study of bases of finite order. The classical bases 
are the squares, cubes, and higher powers; the polygonal numbers; and the prime 
numbers. The classical questions associated with these bases are Waring's problem 
and the Goldbach conjecture. 

Waring's problem is to prove that, for every k 2: 2, the nonnegative kth powers 
form a basis of finite order. We prove several results connected with Waring's 
problem, including Hilbert's theorem that every nonnegative integer is the sum of 



viii Preface 

a bounded number of kth powers, and the Hardy-Littlewood asymptotic formula 
for the number of representations of an integer as the sum of s positive kth powers. 

Goldbach conjectured that every even positive integer is the sum of at most 
two prime numbers. We prove three of the most important results on the Gold
bach conjecture: Shnirel 'man 's theorem that the primes are a basis of finite order, 
Vmogradov's theorem that every sufficiently large odd number is the sum of three 
primes, and Chen's theorem that every sufficently large even integer is the sum of 
a prime and a number that is a product of at most two primes. 

Many unsolved problems remain. The Goldbach conjecture has not been proved. 
There is no proof of the conjecture that every sufficiently large integer is the sum 
of four nonnegative cubes, nor can we obtain a good upper bound for the least 
number s of nonnegative kth powers such that every sufficiently large integer 
is the sum of s kth powers. It is possible that neither the circle method nor the 
sieve method is powerful enough to solve these problems and that completely 
new mathematical ideas will be necessary, but certainly there will be no progress 
without an understanding of the classical methods. 

The prerequisites for this book are undergraduate courses in number theory and 
real analysis. The appendix contains some theorems about arithmetic functions 
that are not necessarily part of a first course in elementary number theory. In a 
few places (for example, Linnik's theorem on sums of seven cubes, Vinogradov's 
theorem on sums of three primes, and Chen 's theorem on sums of a prime and an 
almost prime), we use results about the distribution of prime numbers in arithmetic 
progressions. These results can be found in Davenport's Multiplicative Number 
Theory [19]. 

Additive number theory is a deep and beautiful part of mathematics, but for 
too long it has been obscure and mysterious, the domain of a small number of 
specialists, who have often been specialists only in their own small part of additive 
number theory. This is the first of several books on additive number theory. I hope 
that these books will demonstrate the richness and coherence of the subject and 
that they will encourage renewed interest in the field. 

I have taught additive number theory at Southem Illinois University at Carbon
dale, Rutgers University-New Brunswick, and the City University of New York 
Graduate Center, and I am grateful to the students and colleagues who participated 
in my graduate courses and seminars. I also wish to thank Henryk Iwaniec, from 
whom I leamed the linear sieve and the proof of Chen 's theorem. 

This work was supported in part by grants from the PSC-CUNY Research Award 
Program and the National Security Agency Mathematical Sciences Program. 

I would very much like to receive comments or corrections from readers of this 
book. My e-mail addresses are nathansn@alpha.lehman.cuny.edu and nathanson@ 
worldnet.att.net. A list of errata will be available on my homepage at http://www. 
lehman.cuny.edu or http://math.lehman.cuny.edu/nathanson. 

Melvyn B. Nathanson 
Maplewood, New Jersey 

May 1,1996 
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Notation and conventions 

Theorems, lemmas, and corollaries are numbered consecutively in each chapter 
and in the Appendix. For example, Lemma 2.1 is the first lemma in Chapter 2 and 
Theorem A.2 is the second theorem in the Appendix. 

The lowercase letter p denotes a prime number. 
We adhere to the usual convention that the empty sum (the sum containing no 

terms) is equal to zero and the empty product is equal to one. 
Let ! be any real or complex-valued function, and let g be a positive function. 

The functions ! and g can be functions of a real variable x or arithmetic functions 
defined onIy on the positive integers. We write 

! = O(g) 

or 
!«g 

or 
g»! 

if there exists a constant c > O such that 

!!(x)! =:: cg(x) 

for alI x in the domain of !. The constant c is called the implied constant . We 
write 

! «a,b, ... g 

if there exists a constant c > O that depends on a, b, ... such that 

!!(x)! =:: cg(x) 



xiv Notation and conventions 

for alI x in the domain of f. We write 

if 

f = o(g) 

Iim f(x) = O. 
x-+oo g(x) 

The function f is asymptotic to g, denoted 

if 
Iim f(x) ... 1. 

x-+oo g(x) 

The real-valued function f is increasing on the interval 1 if f(xl) ~ f(X2) for alI 
XI, X2 E 1 with XI < X2. Similarly, the real-valued function f is decreasing on 
the interval 1 if f(xl) 2: f(X2) for alI XI, X2 E 1 with XI < X2. The function f is 
monotonie on the interval 1 if it is either increasing on 1 or decreasing on 1. 

We use the following notation for exponential functions: 

exp(x) - eX 

and 
e(x) - exp(2rrix) .. e21rix • 

The following notation is standard: 
Z the integers 0, ±1, ±2, ... 
R the real numbers 
Rn 

zn 
C 
Izl 
fflz 
~z 
[x] 

{X} 

IIxli 

(al, ... , an) 
[alo . .. ,an] 
IXI 
hA 

n-dimensional Euclidean space 
the integer Iattice in Rn 

the complex numbers 
the absolute value of the complex number z 
the real part of the complex number z 
the imaginary part of the complex number z 
the integer part of the real number x, 
that is, the integer uniquely determined 
by the inequality [x] ~ X < [x] + 1. 
the fractional part of the real number x, 
that is, {x} = x - [x] E [0,1). 
the distance from the real number x 
to the nearest integer, that is, 
IIxli = min{lx - ni: nE Z} = min ({x}, 1 - {x}) E [0,1/2]. 
the greatest common divisor of the integers al, ... , an 
the Ieast common multiple of the integers al, ... , an 
the cardinality of the set X 
the h-fold sumset, consisting of alI sums of h elements of A 


