Complex Analysis in One Variable Second Edition

Raghavan Narasimhan Yves Nievergelt

Springer Science+Business Media, LLC

Raghavan Narasimhan Department of Mathematics University of Chicago Chicago, IL 60637 U.S.A. Yves Nievergelt Department of Mathematics Eastern Washington University Cheney, WA 99004 U.S.A.

Library of Congress Cataloging-in-Publication Data

Narasimhan, Raghavan.
Complex analysis in one variable.-2nd ed. / Raghavan Narasimhan and Yves Nievergelt. p. cm.
Includes bibliographical references and index.
ISBN 978-1-4612-6647-1 ISBN 978-1-4612-0175-5 (eBook)
DOI 10.1007/978-1-4612-0175-5
1. Functions of complex variables. 2. Mathematical analysis. I. Nievergelt, Yves. II. Title.

QA331.N27 2000 515'.9-dc21

00-051906 CIP

AMS Subject Classifications: 30-01, 30A05, 30A99, 30D30, 31A05, 32A10

Printed on acid-free paper.

© 2001 Springer Science+Business Media New York Originally published by Birkhäuser Boston in 2001 Softcover reprint of the hardcover 2nd edition 2001

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC,

except for brief excerpts in connection with reviews or scholarly analysis. Use in

connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

ISBN 978-1-4612-6647-1 SPIN 10749282

Typeset in IATEX2E by TEXniques, Inc., Cambridge, MA.

Contents

Pr	Preface to the Second Edition				
Pr	Preface to the First Edition				
No	Notation and Terminology x				
I	Complex Analysis in One Variable Raghavan Narasimhan	1			
1	Elementary Theory of Holomorphic Functions	3			
2	 Some basic properties of C-differentiable and holomorphic functions Integration along curves Fundamental properties of holomorphic functions Fundamental properties of holomorphic functions The theorems of Weierstrass and Montel Meromorphic functions Meromorphic functions The Looman–Menchoff theorem Covering Spaces and the Monodromy Theorem Covering spaces and the lifting of curves The sheaf of germs of holomorphic functions Covering spaces and integration along curves The monodromy theorem and the homotopy form 	4 10 22 32 36 43 53 55 57			
	 of Cauchy's theorem	60 63			
3	The Winding Number and the Residue Theorem 1 The winding number 2 The residue theorem 3 Applications of the residue theorem	69 69 73 79			
4	Picard's Theorem	87			

Contents

5	Inhomogeneous Cauchy–Riemann Equation and Runge's Theorem	97
	1 Partitions of unity	97
	2 The equation $\frac{\partial u}{\partial \overline{z}} = \phi$	99
	3 Runge's theorem	103
	4 The homology form of Cauchy's theorem	111
6	Applications of Runge's Theorem	115
	1 The Mittag-Leffler theorem	115
	2 The cohomology form of Cauchy's theorem	119
	3 The theorem of Weierstrass	121
	4 Ideals in $\mathcal{H}(\Omega)$	127
7	Riemann Mapping Theorem and Simple Connectedness in the Plane	139
	1 Analytic automorphisms of the disc and of the annulus	139
	2 The Riemann mapping theorem	143
	3 Simply connected plane domains	145
8	Functions of Several Complex Variables	151
9	Compact Riemann Surfaces	161
	1 Definitions and basic theorems	161
	2 Meromorphic functions	166
	3 The cohomology group $H^1(\mathfrak{U}, \mathcal{O})$	167
	4 A theorem from functional analysis	171
	5 The finiteness theorem	176
	6 Meromorphic functions on a compact Riemann surface	179
10	The Corona Theorem	187
	1 The Poisson integral and the theorem of F. and M. Riesz	188
	2 The corona theorem	197
11	Subharmonic Functions and the Dirichlet Problem	209
	1 Semi-continuous functions	209
	2 Harmonic functions and Harnack's principle	212
	3 Convex functions	215
	4 Subharmonic functions: Definition and basic properties	219
	5 Subharmonic functions: Further properties and	
	application to convexity theorems	
	6 Harmonic and subharmonic functions on Riemann surfaces	237
	7 The Dirichlet problem	237
	8 The Radó–Cartan theorem	244

Contents

II		xercis es Nieve		255		
	Intr	oducti	on	257		
0	Review of Complex Numbers					
	1		braic properties of the complex numbers	. 259		
	2	Com	plex equations of generalized circles	. 261		
	3	Com	plex fractional linear transformations	. 262		
	4	Торо	logical concepts	. 265		
1	Elei	mentar	y Theory of Holomorphic Functions	267		
	1	Some	e basic properties of C-differentiable			
		and h	olomorphic functions	. 267		
		1.1	Complex derivatives and Cauchy–Riemann equations			
		1.2	Differentials and conformal maps	. 269		
		1.3	Conformal maps			
		1.4	Radius of convergence of power series	. 275		
		1.5	Exponential, trigonometric, and dilogarithm functions	. 277		
	2	Integ	ration along curves	. 278		
		2.1	Complex line integrals	. 278		
		2.2	Complex derivatives of line integrals	. 279		
		2.3	Remainder of complex Taylor polynomials	. 281		
		2.4	H. A. Schwarz's reflection principle	. 281		
	3	Fund	amental properties of holomorphic functions	. 282		
		3.1	The complex exponential function	. 282		
		3.2	Holomorphic functions	. 284		
		3.3	Bounds on the size of roots of polynomials			
		3.4	Principal branch of the complex square root	. 287		
		3.5	Complex square roots in celestial mechanics	. 288		
	4	Theo	rems of Weierstrass and Montel	. 290		
	5	Mero	morphic functions	. 290		
		5.1	A complex Newton's method	. 291		
		5.2	Sequences of complex numbers	. 293		
2	Covering Spaces and the Monodromy Theorem					
	1	Cove	ring spaces and the lifting of curves	. 297		
		1.1	Examples of real or complex manifolds	. 297		
		1.2	Covering maps	. 299		
	2		sheaf of germs of holomorphic functions	. 299		
	3		ring spaces and integration along curves	. 300		
	4		nonodromy theorem and the homotopy form uchy's theorem	. 303		
	5		ications of the monodromy theorem			
	5	- v Ph		. 505		

Contents

3	The Winding Number and the Residue Theorem	305			
	1 The winding number	305			
	2 The residue theorem	307			
	3 Applications of the residue theorem	310			
4 Picard's Theorem					
5	The Inhomogeneous Cauchy–Riemann Equation and Runge's Theorem	315			
	1 Partitions of unity	315			
	2 The equation $\partial u/\partial \overline{z} = \phi$	316			
	2.1 Complex differential forms	316			
	2.2 Rouché's theorem	321			
	2.3 Inhomogeneous Cauchy–Riemann equations	322			
	3 Runge's theorem	323			
6	Applications of Runge's Theorem	331			
	1 The Mittag-Leffler theorem	331			
	2 The cohomology form of Cauchy's theorem	332			
	3 The theorem of Weierstrass	332			
	4 Ideals in $\mathcal{H}(\Omega)$	335			
7	The Riemann Mapping Theorem and Simple Connectedness				
	in the Plane	337			
	1 Analytic automorphisms of the disc				
	and of the annulus	337			
	2 The Riemann mapping theorem				
	3 Simply connected plane domains	342			
8 Functions of Several Complex Variables					
9	Compact Riemann Surfaces	351			
	1 Definitions and basic theorems	351			
	3 The cohomology group $H^1(\mathfrak{U}, \mathcal{O})$				
	6 Meromorphic functions on a compact				
	Riemann surface	358			
10	The Corona Theorem	361			
	1 The Poisson integral and the theorem of				
	F. and M. Riesz	361			
11	Subharmonic Functions and the Dirichlet Problem	365			
No	otes for the exercises	369			
Re	ferences for the exercises	373			
	Index				
111	исл	379			