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Preface 

This book contains both a synthesis and mathematical analysis of a 
wide set of algorithms and theories whose aim is the automatic segmen­
tation of digital images as well as the understanding of visual perception. 
A common formalism for these theories and algorithms is obtained in a 
variational form. Thank to this formalization, mathematical questions 
about the soundness of algorithms can be raised and answered. 

Perception theory has to deal with the complex interaction between 
regions and "edges" (or boundaries) in an image: in the variational seg­
mentation energies, "edge" terms compete with "region" terms in a way 
which is supposed to impose regularity on both regions and boundaries. 
This fact was an experimental guess in perception phenomenology and 
computer vision until it was proposed as a mathematical conjecture by 
Mumford and Shah. 

The third part of the book presents a unified presentation of the evi­
dences in favour of the conjecture. It is proved that the competition of 
one-dimensional and two-dimensional energy terms in a variational for­
mulation cannot create fractal-like behaviour for the edges. The proof 
of regularity for the edges of a segmentation constantly involves con­
cepts from geometric measure theory, which proves to be central in im­
age processing theory. The second part of the book provides a fast and 
self-contained presentation of the classical theory of rectifiable sets (the 
"edges") and unrectifiable sets ("fractals"). This part contains a discus­
sion of new uniform density properties of rectifiable sets, which prove 
extremely useful in image processing theory. Several image processing 
experiments and many figures illustrate algorithmic discussions and math­
ematical proofs. 

This book will be accessible to graduate science students with some 
mathematical background. It will be of interest to mathematicians 
concerned with the interaction of analysis and geometry and to vision 
researchers. 



Introduction 

Natural, digital and perceptual images. 

When one looks directly at scenes from the natural or the human world, 
or at any image (painting, photograph, drawing, ... ) representing such 
scenes, it is impossible to avoid seeing in them structures, which in many 
cases can be identified with real objects. These objects can be somehow 
concrete, as in photographs where we see trees, roads, windows, people, 
etc., or abstract perceptual structures, as the ones which appear in ab­
stract paintings and can only be described in geometrical terms. However, 
we know that the "visual information" arriving at our retina, far from 
being structured, is purely local information for which a good model is 
given by digital images. 

From the mathematical (and engineering) viewpoint, digital images 
simply are functions g(x), where x is a point of the image domain n 
(the plane, a rectangle, ... ) and g( x) is a real number representing the 
"brightness" or "grey level" of the image at point x. This is the un­
structured datum with which engineers have to deal in image analysis, 
robotics, etc.... And it also is somehow the basic datum which arrives 
at our retina. There is therefore not much in common between what 
we think we "immediately" see and what the physical information about 
light reflected by objects is. This striking difference between "images" in 
the engineering or the biological sense and "images" in the perceptual, 
artistic, semantic sense is well known, but the question is: How do we 
pass from the unstructured digital image to the structured perceptual 
one? 

This question has been addressed in a scientific framework by psychol­
ogists of the Gestalt school in the twenties (Koehler [Koehl) and then, 
with the first computers allowing to display synthetic images, by psy­
chophysicists who did measurements of how much was perceived in the 
very first milliseconds after the arrival of an image to the retina (Julesz 
[Jul, Ju2l). At the end of the sixties, the same problem was addressed in 
a very practical framework by engineers who wished to extract automatic­
ally useful information from digital pictures. The aim of this extraction 
was to build perception-driven robots and to better understand the hu­
man and animal vision. Then arose the Segmentation Problem, which is 
the object of this book. 
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The segmentation problem and its algorithms. 

Segmenting a digital image means finding (by a numerical algorithm) 
its homogeneous regions and its edges, or boundaries. Of course, the 
homogeneous regions are supposed to correspond to meaningful parts 
of objects in the real world, and the edges to their apparent contours. 
Gestaltists and psychophysicists agree that such a segmentation process 
is at work at the very first stages of the visual perception process. In ad­
dition they proved that these first stages are highly independent of any 
learning or a priori knowledge of the world. In other words, the Vision 
research assumes that these first stages are accomplished by a Geometry 
machine, and it is also assumed that computer algorithms, working on 
digital images, should be able to do the same (Marr [Marr3], Koenderink 
[Koen2]). It is not the aim of this book to directly discuss this thesis, 
but rather to classify the proposed algorithms and their mathematical 
properties. More than a thousand algorithms have been proposed for 
segmenting images or detecting "edges". It is of course impossible (and 
unnecessary) to review them all, but the first part of this book (Chapters 
1 to 4) is devoted to a classification of these algorithms and their trans­
lation from a discrete into a continuous framework (more adapted to the 
mathematical analysis). The result of this discussion was unexpected 
to the authors of this book because they became aware that under the 
very large diversity of numerical tools, there essentially was only one 
segmentation (or "edge detection") model. Indeed, as we hope 
these chapters will convince the reader, most segmentation algorithms 
try to minimize, by several very different procedures, one and the same 
Segmentation energy. This energy measures how smooth the regions are, 
how faithful the "analyzed image" to the original image and the obtained 
"edges" to the image discontinuities are. 

One can write, and we indeed write in Chapter 4, the "most general" 
segmentation energy underlying all the analysed computational models. 
It has six or seven partly redundant terms, however, and therefore does 
not fit elegant mathematical analysis. If we keep the three more mean­
ingful terms of the functional, we obtain the Mumford-Shah energy. Thus 
the Mumford-Shah variational model, although initially proposed as one 
model more, happens to somehow be the general model of image seg­
mentation, and all the other ones are variants, or algorithms tending to 
minimize these variants. The Mumford-Shah model defines the segmen­
tation problem as a joint smoothing/edge detection problem: given an 
image g(x), one seeks simultaneously a "piecewise smoothed image" u(x) 
with a set K of abrupt discontinuities, the "edges" of g. Then the "best" 
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segmentation of a given image is obtained by minimizing the functional 

E(u, K) = { (IVu(x)12 + (u - g)2)dx + length(K). 
In\K 

The first term imposes that u is smooth outside the edges, the second 
that the piecewise smooth image u(x) indeed approximates g(x), and the 
third that the discontinuity set K has minimal length (and therefore in 
particular is as smooth as possible). The model is minimal in the sense 
that removing one of the above three terms would yield a trivial solution. 
Needless to say, such a simple functional cannot give a good account of 
the geometric intricacy of most natural images, or of our perception of 
them. What is expected from algorithms minimizing such a functional 
is a sketchy, cartoon-like version of the image, and these algorithms will 
give perceptually good results when the processed images somehow match 
this a priori model: contrasted images with objects presenting piecewise 
smooth surfaces. We shall see some experimental examples in Chapters 
2 to 5. 

The Mumford-Shah conjecture. 

Two main problems have to be solved once we have fixed a single uni­
versal segmentation model. The first one is practical: How can we define 
algorithms minimizing the Mumford-Shah energy on computers? Now, as 
we pointed out, the algorithms have in many cases preexisted the the­
ory and many of them, though perfectible, yield perceptually reasonable 
results, as we shall see in Chapters 2 to 5. The second question is simply 
a mathematical one: Is the model consistent? That is, do segmentations 
exist which indeed minimize the Mumford-Shah energy, are they unique 
and are the boundaries thus obtained smooth? 

Mumford and Shah [MumSl] conjectured the existence of minimal 
segmentations made of a finite set of C 1 curves. So far, this conjecture has 
not been fully proved and only partial but meaningful enough results are 
at hand. The problem has proved difficult for the present mathematical 
technique because of the subtle interaction of the two-dimensional term 
(in u) and the one-dimensional term length(K). The same difficulty 
arises when one wishes to define a computer program minimizing the 
energy and we hope that the mathematical analysis will somehow clarify 
the numerical debate. 

Edge sets and rectifiable sets. 

As a matter of fact, the first mathematical task is to correctly define the 
functional E(u,K). Indeed, we cannot a priori impose that an edge set 
K minimizing E is made of a finite set of curves. This is precisely what 
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has to be proved, and if we imposed this condition to all "candidates" to 
be minimizers, we would have, for the time being, no existence theorem 
at all. 

This kind of situation is classical in mathematical analysis and is dealt 
with by enlarging the Search Space, that is, in our case, by looking for a 
solution in a wider class of sets with finite length than just finite sets of 
curves. This is done by defining the "length" of K as its one-dimensional 
Hausdorff measure, which is the most natural way of extending the con­
cept of length to non-smooth sets (Caratheodory, 1915 [Caraj, Hausdorff, 
1919 [Haus]). So we shall have to work in the main part of this book 
with "I-sets", i.e., sets with finite, positive, one-dimensional Hausdorff 
measure. The theory of these sets was developed by Besicovitch between 
1928 and 1944 [Besil, 2, 3j, and was completed by Federer (1947, [Fedl]), 
Marstrand (1961 [Marst]), Mattila (1975 [Matt]) and Preiss (1987 [Prei]). 
As the dates indicate, it has not been a straightforward theory. 

Now, it is a extremely suggestive theory for image processing. Besi­
covitch conjectured a remarkable structural classification of sets with 
finite m-dimensional Hausdorff measure. This conjecture was proved by 
himself and the above-mentioned authors. We shall now explain the re­
sults of the theory in the case m = 1, which is particularly significant for 
image processing, but they are identical in any dimension. 

Besicovitch calls rectifiable any I-set which is essentially contained in 
a countable family of curves with finite length. Clearly, the "edge sets" 
sought for in image processing belong to this class. A I-set is called 
fully unrectifiable if it has no rectifiable part. Of course, any I-set can 
be divided into its rectifiable and its unrectifiable part, but the question 
arises: How can we separate them? Here comes the remarkable Besicov­
itch discovery: Besicovitch conjectured all(~ thereafter proved that there 
is a simple local density criterion to decide whether a point x of K belongs 
to the rectifiable part of K or not. This criterion is, from the computa­
tional viewpoint, clear cut: If x is in the rectifiable part, then the length 
of K n B(x, r) is equivalent to 2r when r tends to zero. Otherwise, one 
can find balls B(x, r) with arbitrarily small radii such that the length 
of K n B(x, r) is less than £2r. This is the density criterion. Another 
geometric criterion is the following. If x is in the rectifiable part, then 
K admits a tangent line at x, and if x is in the unrectifiable part, every 
cone with vertex x and arbitrarily small diameter contains parts of K 
with positive length. Here again, strong local criteria give an account of 
the (nonlocal) rectifiability property. Last but not least, the unrectifiable 
part has a "fractal" structure which, among other properties, implies that 
its projection on almost every line has zero length. 

When a computer scientist has applied some edge detector to an image, 
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he can see on the screen a set of points, and most edge detection or 
segmentation devices deal with so-called connectivity algorithms. What 
do these algorithms aim at? Clearly, a separation of the rectifiable part 
from the unrectifiable one. Indeed, "edges" are always assumed to be 
contained in curves or in finite unions of curves because they are assumed 
to correspond to the apparent contours of physical objects. Even if these 
objects may have "fractal" boundaries, like trees or clouds, the perception 
and the computer programs tend to define their boundary as a set of 
smooth lines. The Besicovitch theory is a first answer as to the theoretical 
possibility of separating by local criteria the rectifiable part of a set from 
its unrectifiable part. To our knowledge, no one of the Besicovitch criteria 
has been tried for "cleaning" edge sets from their spurious, unrectifiable 
part. The reason may be that the situation, in the numerical framework, 
is less contrasted: what really is aimed at is a separation from a more 
rectifiable part from a less rectifiable part. 

We shall see that variational algorithms in image processing implicitly 
do this task, since minima of the Mumford-Shah functional are uniformly 
rectifiable in a sense which will be developed in the third part of this 
book. In any case, the second part of this book is devoted to a complete 
exposition of the Besicovitch theory. Our presentation does not follow 
the original Besicovitch presentation, which only works for dimension l. 
(An excellent such presentation is done in Falconer [Fall]). We tried to 
take into account all the new information about the geometric structure of 
rectifiable and unrectifiable sets given by the above mentioned Marstrand 
and Mattila contributions, as well as several new compactness results 
about sequences of m-sets. All of these results are proved because they 
are used in the third part of this book: We wished the exposition to be 
as complete and self-contained as possible .. 

What will be proved about the Mumford-Shah functional. 

Although the Mumford and Shah conjecture is not yet proved, adequately 
weakened versions have been, and we shall list a series of questions which 
have been and will in this book be positively answered. 
• Do minimal segmentations exist, and are they unique for each image? 
The answer is yes for existence and no for uniqueness, which matches the 
experimental intuition. 
• Is the set of minimal segmentations small? Somehow, yes, because it is 
compact. 
We now are concerned with the structure of the edge set. 

• Are the edge sets obtained by the Mumford-Shah theory rectifiable in 
the Besicovitch sense? The answer is yes, and this is a first confirmation 
that the variational method is sound. 
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• Is the "edge set" made of a finite set of (not necessarily smooth) curves? 
The answer is unknown, but we shall see that the edge set is almost equal 
to a finite set of curves and can even be enclosed in a single curve with 
finite length, which is a remarkable result! 
At this stage of the theory, one can deduce that the Mumford-Shah en­
ergy and conjecture are sound and that all the segmentation algorithms 
discussed in the first part of the book find, beyond their own experimental 
justification, a mathematical label of correctedness. 

To summarize, this book is divided in three parts: 

• Modelization (Chapters 1 to 5), 
• Geometric measure theory and the structure of sets with finite Haus­
dorff measure (Chapters 6 to 12), and 
• Existence and structural properties of the minimal segmentations for 
the Mumford-Shah model (Chapters 13 to 16). 

We tried to make this book as self-contained as possible. The first part 
only asks that the reader have some familiarity with the formalism of 
partial differential operators; no further mathematical knowledge is re­
quired. The second part is fully self-contained. It will, however, seem 
easier to readers having some knowledge of the Lebesgue measure and 
integration theory. The last part asks the reader to know the elementary 
distribution theory, but not more than the mere definitions of derivatives 
in the distributional sense. The few results about elliptic equations and 
variational problems used therein are either proved or explicitly admitted. 
The authors wish to thank Haim Brezis who had the idea that the present 
book could be written, and Ennio de Giorgi and Yves Meyer, who were 
a steady source of good suggestions and encouragement. The remark­
able applications of the segmentation algorithm discussed in Chapter 5, 
developed at Cognitec-Inc by Lenny Rudin and Stanley Osher, brought 
surprise and excitement. We thank Isabeau Birindelli and Guy David for 
many useful comments. The first author thanks heartily his collabora­
tors Luis Alvarez, Coloma Ballester, Vicent Caselles, Antonin Chambolle, 
Francine Catte, Tomeu ColI, Fran<;oise Dibos, Manolo Gonzalez, Georges 
Koepfier, Frederic Guichard and Christian Lopez, who kindly put to his 
disposition experimental results. Every successful image processing ex­
periment condenses a lot of mathematical and algorithmic skill. 


