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Preface 

In the fall of 1990, I taught Math 581 at New Mexico State University 
for the first time. This course on field theory is the first semester of the 
year-long graduate algebra course here at NMSU. In the back of my mind, 
I thought it would be nice someday to write a book on field theory, one 
of my favorite mathematical subjects, and I wrote a crude form of lecture 
notes that semester. Those notes sat undisturbed for three years until late 
in 1993 when I finally made the decision to turn the notes into a book. 
The notes were greatly expanded and rewritten, and they were in a form 
sufficient to be used as the text for Math 581 when I taught it again in the 
fall of 1994. 

Part of my desire to write a textbook was due to the nonstandard format 
of our graduate algebra sequence. The first semester of our sequence is field 
theory. Our graduate students generally pick up group and ring theory in 
a senior-level course prior to taking field theory. Since we start with field 
theory, we would have to jump into the middle of most graduate algebra 
textbooks. This can make reading the text difficult by not knowing what 
the author did before the field theory chapters. Therefore, a book devoted 
to field theory is desirable for us as a text. While there are a number of 
field theory books around, most of these were less complete than I wanted. 
For example, Artin's wonderful book [1] barely addresses separability and 
does not deal with infinite extensions. I wanted to have a book containing 
most everything I learned and enjoyed about field theory. 

This leads to another reason why I wanted to write this book. There are a 
number of topics I wanted to have in a single reference source. For instance, 
most books do not go into the interesting details about discriminants and 
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how to calculate them. There are many versions of discriminants in different 
fields of algebra. I wanted to address a number of notions of discriminant 
and give relations between them. For another example, I wanted to discuss 
both the calculation of the Galois group of a polynomial of degree 3 or 
4, which is usually done in Galois theory books, and discuss in detail the 
calculation of the roots of the polynomial, which is usually not done. I feel it 
is instructive to exhibit the splitting field of a quartic as the top of a tower 
of simple radical extensions to stress the connection with solvability of the 
Galois group. Finally, I wanted a book that does not stop at Galois theory 
but discusses non-algebraic extensions, especially the extensions that arise 
in algebraic geometry. The theory of finitely generated extensions makes 
use of Galois theory and at the same time leads to connections between 
algebra, analysis, and topology. Such connections are becoming increasingly 
important in mathematical research, so students should see them early. 

The approach I take to Galois theory is roughly that of Artin. This 
approach is how I first learned the subject, and so it is natural that I feel it 
is the best way to teach Galois theory. While I agree that the fundamental 
theorem is the highlight of Galois theory, I feel strongly that the concepts of 
normality and separability are vital in their own right and not just technical 
details needed to prove the fundamental theorem. It is due to this feeling 
that I have followed Artin in discussing normality and separability before 
the fundamental theorem, and why the sections on these topics are quite 
long. To help justify this, I point out that results in these sections are cited 
in subsequent chapters more than is the fundamental theorem. 

This book is divided into five chapters, along with five appendices for 
background material. The first chapter develops the machinery of Galois 
theory, ending with the fundamental theorem and some of its most imme
diate consequences. One of these consequences, a proof of the fundamental 
theorem of algebra, is a beautiful application of Galois theory and the Sy
low theorems of group theory. This proof made a big impression on me 
when I first saw it, and it helped me appreciate the Sylow theorems. 

Chapter II applies Galois theory to the study of certain field extensions, 
including those Galois extensions with a cyclic or Abelian Galois group. 
This chapter takes a diversion in Section 10. The classical proof of the 
Hilbert theorem 90 leads naturally into group cohomology. While I believe 
in giving students glimpses into more advanced topics, perhaps this section 
appears in this book more because of my appreciation for cohomology. As 
someone who does research in division algebras, I have seen cohomology 
used to prove many important theorems, so I felt it was a topic worth 
having in this book. 

In Chapter III, some of the most famous mathematical problems of antiq
uity are presented and answered by using Galois theory. The main questions 
of ruler and compass constructions left unanswered by the ancient Greeks, 
such as whether an arbitrary angle can be trisected, are resolved. We com
bine analytic and algebraic arguments to prove the transcendence of 7r and 



Preface vii 

e. Formulas for the roots of cubic and quartic polynomials, discovered in 
the sixteenth century, are given, and we prove that no algebraic formula 
exists for the roots of an arbitrary polynomial of degree 5 or larger. The 
question of solvability of polynomials led Galois to develop what we now 
call Galois theory and in so doing also developed group theory. This work 
of Galois can be thought of as the birth of abstract algebra and opened the 
door to many beautiful theories. 

The theory of algebraic extensions does not end with finite extensions. 
Chapter IV discusses infinite Galois extensions and presents some impor
tant examples. In order to prove an analog of the fundamental theorem 
for infinite extensions, we need to put a topology on the Galois group. 
It is through this topology that we can determine which subgroups show 
up in the correspondence between sub extensions of a Galois extension and 
subgroups of the Galois group. This marks just one of the many places in 
algebra where use of topology leads to new insights. 

The final chapter of this book discusses nonalgebraic extensions. The 
first two sections develop the main tools for working with transcendental 
extensions: the notion of a transcendence basis and the concept of linear 
disjointness. The latter topic, among other things, allows us to extend to 
arbitrary extensions the idea of separability. The remaining sections of 
this chapter introduce some of the most basic ideas of algebraic geometry 
and show the connections between algebraic geometry and field theory, 
notably the theory of finitely generated nonalgebraic extensions. It is the 
aim of these sections to show how field theory can be used to give geometric 
information, and vice versa. In particular, we show how the dimension of an 
algebraic variety can be calculated from knowledge of the field of rational 
functions on the variety. 

The five appendices give what I hope is the necessary background in set 
theory, group theory, ring theory, vector space theory, and topology that 
readers of this book need but in which they may be partially deficient. These 
appendices are occasionally sketchy in details. Some results are proven and 
others are quoted as references. Their purpose is not to serve as a text 
for these topics but rather to help students fill holes in their background. 
Exercises are given to help to deepen the understanding of these ideas. 

Two things I wanted this book to have were lots of examples and lots 
of exercises. I hope I have succeeded in both. One complaint I have with 
some field theory books is a dearth of examples. Galois theory is not an 
easy subject to learn. I have found that students often finish a course in 
Galois theory without having a good feel for what a Galois extension is. 
They need to see many examples in order to really understand the theory. 
Some of the examples in this book are quite simple, while others are fairly 
complicated. I see no use in giving only trivial examples when some of the 
interesting mathematics can only be gleaned from looking at more intricate 
examples. For this reason, I put into this book a few fairly complicated and 
nonstandard examples. The time involved in understanding these examples 
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will be time well spent. The same can be said about working the exercises. 
It is impossible to learn any mathematical subject merely by reading text. 
Field theory is no exception. The exercises vary in difficulty from quite 
simple to very difficult. I have not given any indication of which are the 
hardest problems since people can disagree on whether a problem is difficult 
or not. Nor have I ordered the problems in any way, other than trying to 
place a problem in a section whose ideas are needed to work the problem. 
Occasionally, I have given a series of problems on a certain theme, and 
these naturally are in order. I have tried not to place crucial theorems 
as exercises, although there are a number of times that a step in a proof 
is given as an exercise. I hope this does not decrease the clarity of the 
exposition but instead improves it by eliminating some simple but tedious 
steps. 

Thanks to many people need to be given. Certainly, authors of previously 
written field theory books need to be thanked; my exposition has been in
fluenced by reading these books. Adrian Wadsworth taught me field theory, 
and his teaching influenced both the style and content of this book. I hope 
this book is worthy of that teaching. I would also like to thank the colleagues 
with whom I have discussed matters concerning this book. Al Sethuraman 
read preliminary versions of this book and put up with my asking too many 
questions, Irena Swanson taught Math 581 in fall 1995 using it, and David 
Leep gave me some good suggestions. I must also thank the students of 
NMSU who put up with mistake-riddled early versions of this book while 
trying to learn field theory. Finally, I would like to thank the employees at 
TCI Software, the creators of Scientific Workplace. They gave me help on 
various aspects of the preparation of this book, which was typed in Jb.1EX 
using Scientific Workplace. 

April 1996 Pat Morandi 
Las Cruces, New Mexico 



Notes to the Reader 

The prerequisites for this book are a working knowledge of ring theory, in
cluding polynomial rings, unique factorization domains, and maximal ide
als; some group theory, especially finite group theory; vector space theory 
over an arbitrary field, primarily existence of bases for finite dimensional 
vector spaces, and dimension. Some point set topology is used in Sections 
17 and 21. However, these sections can be read without worrying about the 
topological notions. Profinite groups arise in Section 18 and tensor products 
arise in Section 20. If the reader is unfamiliar with any of these topics, as 
mentioned in the Preface there are five appendices at the end of the book 
that cover these concepts to the depth that is needed. Especially important 
is Appendix A. Facts about polynomial rings are assumed right away in 
Section 1, so the reader should peruse Appendix A to see if the material is 
familiar. 

The numbering scheme in this book is relatively simple. Sections are 
numbered independently of the chapters. A theorem number of 3.5 means 
that the theorem appears in Section 3. Propositions, definitions, etc., are 
numbered similarly and in sequence with each other. Equation numbering 
follows the same scheme. A problem referred to in the section that it ap
pears will be labeled such as Problem 4. A problem from another section 
will be numbered as are theorems; Problem 13.3 is Problem 3 of Section 13. 
This numbering scheme starts over in each appendix. For instance, Theo
rem 2.3 in Appendix A is the third numbered item in the second section of 
Appendix A. 

Definitions in this book are given in two ways. Many definitions, including 
all of the most important ones, are spelled out formally and assigned a 
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number. Other definitions and some terminology are given in the body of 
the text and are emphasized by italic text. If this makes it hard for a reader 
to find a definition, the index at the end of the book will solve this problem. 

There are a number of references at the end of the book, and these are 
cited occasionally throughout the book. These other works are given mainly 
to allow the reader the opportunity to see another approach to parts of field 
theory or a more in-depth exposition of a topic. In an attempt to make this 
book mostly self-contained, substantial results are not left to be found in 
another source. Some of the theorems are attributed to a person or persons, 
although most are not. Apologies are made to anyone, living or dead, whose 
contribution to field theory has not been acknowledged. 

Notation in this book is mostly standard. For example, the subset relation 
is denoted by ~ and proper subset by c. If B is a subset of A, then the 
set difference {x : x E A, x 1- B} is denoted by A - B. If I is an ideal in a 
ring R, the coset r + I is often denoted by r. Most of the notation used is 
given in the List of Symbols section. In that section, each symbol is given 
a page reference where the symbol can be found, often with definition. 
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and a page reference for each symbol. 
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[K:F] degree of field extension 2 
N natural numbers 2 
Z integers 2 

Q rational numbers 2 
lR real numbers 2 
C complex numbers 2 
lFp integers mod p 2 
{a: P(a)} set builder notation 3 
eVa evaluation homomorphism 5 
F[a], F(a) ring and field generated by F and a 5 
F[al,"" an] ring generated by F and aI, ... an 5 
F(al, ... , an) field generated by F and aI, ... , an 5 
F(X) field generated by F and X 5 
min(F,a) minimal polynomial of a over F 6 
ker( cp) kernel of cp 7 
deg(f(x)) degree of f(x) 8 
gcd(f(x), g(x)) greatest common divisor 8 
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F(S) fixed field of S 18 
F* multiplicative group of F 19 
char(F) characteristic of F 22 
F(y'a) field generated by F and y'a 23 
PGLn(F) projective general linear group 26 
A algebraic numbers 31 
AxB Cartesian product 31 
lSI cardinality of S 32 
A-B set difference 35 
~ isomorphic 39 
FP set of p-powers in F 40 
f'(x) formal derivative of f(x) 40 
[K:F]s separable degree of KIF 48 
[K:F]i purely inseparable degree of KIF 48 
C proper subset 50 
(a) cyclic group generated by a 52 
A x B,AEf)B direct sum 53 
Sn symmetric group 59 
N(H) normalizer 60 
Qs quaternion group 61 
exp(G) exponent of G 65 
R* group of units of R 72 
¢(n) Euler phi function 72 
wn(x) nth cyclotomic polynomial 73 
Qn nth cyclotomic field 75 
EndF(V) space of endomorphisms 78 
Mn(F) ring of n x n matrices 78 
det(A),IAI determinant of A 79 
Tr(A) trace of A 79 
La left multiplication by a 79 
NK/F norm of KIF 79 
TK/F trace of KIF 79 
imodn least nonnegative integer congruent to i modulo n 89 
p p-function 90 
Dn dihedral group 92 
::E[G] integral group ring 95 
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disc( 0:) discriminant of element 112 
An alternating group 113 
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disc(KjF) discriminant of K j F 118 
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Fac algebraic closure 165 
Fs separable closure 165 
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trdeg(Kj F) transcendence degree 179 
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