
Curves and Surfaces

Sebastián Montiel Antonio Ros

Translated by Sebastián Montiel

Graduate Studies in Mathematics
Volume 69

Editorial Board of Graduate Studies in Mathematics

David Saltman (Chair)

Walter Craig

Nikolai Ivanov

Steven G. Krantz

Editorial Committee of the Real Sociedad Matemática Española

Guillermo P. Curbera, Director

Emilio Carrizosa

José M. Muñoz Porras

Javier Duoandikoetxea

Pedro J. Paúl

Alberto Elduque

Pablo Pedregal

Sebastián Montiel

Juan Soler

This work was originally published in Spanish by Proyecto Sur de Ediciones, S. L. under the title Curvas Y Superficies © 1998.

The present translation was created under license for the American Mathematical Society and is published by permission.

Translated by Sebastián Montiel

2000 Mathematics Subject Classification. Primary 53A04, 53A05, 53C40.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-69

Library of Congress Cataloging-in-Publication Data

Montiel, Sebastián, 1958-

[Curvas y superficies. English]

Curves and surfaces / Sebastián Montiel, Antonio Ros.

p. cm. — (Graduate studies in mathematics, ISSN 1065-7339; v. 69)

Includes bibliographical references and index.

ISBN 0-8218-3815-6 (alk. paper)

1. Curves on surfaces. 2. Geometry, Differential. 3. Submanifolds. I. Ros, A. (Antonio), 1957– II. Title. III. Series.

QA643.M6613 2005

516.3'62---dc22

2005048190

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

- © 2005 by the American Mathematical Society. All rights reserved.

 The American Mathematical Society retains all rights
 except those granted to the United States Government.

 Printed in the United States of America.
- The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

 Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 10 09 08 07 06 05

Contents

Preface to the English Edition	X
Preface	xii
Chapter 1. Plane and Space Curves	1
§1.1. Historical notes	1
§1.2. Curves. Arc length	2
§1.3. Regular curves and curves parametrized by arc length	8
§1.4. Local theory of plane curves	g
§1.5. Local theory of space curves	14
Exercises	20
Hints for solving the exercises	24
Chapter 2. Surfaces in Euclidean Space	31
§2.1. Historical notes	31
§2.2. Definition of surface	32
§2.3. Change of parameters	38
§2.4. Differentiable functions	40
§2.5. The tangent plane	44
§2.6. Differential of a differentiable map	46
Exercises	55
Hints for solving the exercises	58
Chapter 3. The Second Fundamental Form	67
§3.1. Introduction and historical notes	67

§3.2. Normal fields, Orientation	69
§3.3. Gauss map and the second fundamental form	76
§3.4. Normal sections	81
§3.5. Height function and the second fundamental form	85
§3.6. Continuity of the curvatures	88
Exercises	94
Hints for solving the exercises	97
Chapter 4. Separation and Orientability	107
§4.1. Introduction	107
§4.2. Local separation	108
§4.3. Surfaces, straight lines, and planes	111
§4.4. The Jordan-Brower separation theorem	116
§4.5. Tubular neighbourhoods	120
Exercises	125
Hints for solving the exercises	126
§4.6. Appendix: Proof of Sard's theorem	131
Chapter 5. Integration on Surfaces	135
§5.1. Introduction	135
$\S 5.2.$ Integrable functions and integration on $S \times \mathbb{R}$	136
§5.3. Integrable functions and integration on surfaces	139
§5.4. Formula for the change of variables	144
§5.5. The Fubini theorem and other properties	145
§5.6. Area formula	151
§5.7. The divergence theorem	157
§5.8. Brower fixed point theorem	161
Exercises	163
Hints for solving the exercises	165
Chapter 6. Global Extrinsic Geometry	171
§6.1. Introduction and historical notes	171
§6.2. Positively curved surfaces	173
§6.3. Minkowski formulas and ovaloids	182
§6.4. The Alexandrov theorem	186
§6.5. The isoperimetric inequality	188
Exercises	195

Hints for solving the exercises	198
Chapter 7. Intrinsic Geometry of Surfaces	203
§7.1. Introduction	203
§7.2. Rigid motions and isometries	206
§7.3. Gauss's Theorema Egregium	210
§7.4. Rigidity of ovaloids	214
§7.5. Geodesics	219
§7.6. The exponential map	229
Exercises	239
Hints for solving the exercises	242
§7.7. Appendix: Other results of an intrinsic type	252
Chapter 8. The Gauss-Bonnet Theorem	275
§8.1. Introduction	275
§8.2. Degree of maps between compact surfaces	276
§8.3. Degree and surfaces bounding the same domain	284
§8.4. Index of a field at an isolated zero	289
§8.5. The Gauss-Bonnet formula	295
§8.6. Exercise: The Euler characteristic is even	304
Exercises: Steps of the proof	305
Chapter 9. Global Geometry of Curves	309
§9.1. Introduction and historical notes	309
§9.2. Parametrized curves and simple curves	313
§9.3. Results already shown on surfaces	319
§9.4. Rotation index of plane curves	329
§9.5. Periodic space curves	338
§9.6. The four-vertices theorem	346
Exercises	350
Hints for solving the exercises	353
§9.7. Appendix: The one-dimensional degree theory	365
Bibliography	371
Index	373