W.N. Venables B.D. Ripley

Modern Applied Statistics with S-Plus

With 124 Figures

Springer Science+Business Media, LLC

W.N. Venables Department of Statistics University of Adelaide Adelaide, South Australia 5005 Australia B.D. Ripley Professor of Applied Statistics University of Oxford 1 South Parks Road Oxford OX1 3TG England

Series Editors:

W. Eddy Department of Statistics Carnegie Mellon University Pittsburgh, PA 15213 USA W. Härdle Institut für Statistik und Ökonometrie rlumboldt-Universität zu Berlin Spandauer Str. 1 D-10178 Berlin Germany S. Sheaffer Australian Graduate School of Management PO Box 1 Kensington New South Wales 2033 Australia L. Tierney School of Statistics University of Minnesota Vincent Hall Minneapolis, MN 55455 USA

Library of Congress Cataloging-in-Publication Data
Modern applied statistics with S-PLUS / W.N. Venables, B.D.
Ripley.
p. cm. -- (Statistics and computing)
Includes bibliographical references and index.
ISBN 978-1-4899-2821-4 ISBN 978-1-4899-2819-1 (eBook)
DOI 10.1007/978-1-4899-2819-1
1. S-Plus. 2. Statistics--Data processing. 3.Mathematical statistics--Data processing. I. Ripley, Brian D., 1952III. Title. III. Series.
QA276.4.V46 1994
005.369--dc20 94-21589

Printed on acid-free paper.

© 1994 by Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1994 Softcover reprint of the hardcover 1st edition 1994

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC. except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Jim Harbison; manufacturing supervised by Jacqui Ashri. Photocomposed pages prepared from the authors' PostScript files.

9 8 7 6 5 4 3 2 1

Contents

Pr	eface		V
Ту	pogra	phical Conventions	xiii
1	Intro	oduction	1
	1.1	A quick overview of S	3
	1.2	Getting started	4
	1.3	Bailing out	6
	1.4	Getting help with functions and features	7
	1.5	An introductory session	8
	1.6	What next?	16
2	The	S Language	17
	2.1	A concise description of S objects	17
	2.2	Calling conventions for functions	25
	2.3	Arithmetical expressions	26
	2.4	Reading data	32
	2.5	Finding S objects	36
	2.6	Character vector operations	38
	2.7	Indexing vectors, matrices and arrays	40
	2.8	Matrix operations	45
	2.9	Functions operating on factors and lists	51
	2.10	Input/Output facilities	54
	2.11	Customizing your S environment	57
	2.12	History and audit trails	59
	2.13	Exercises	59
3	Grap	phical Output	61
	3.1	Graphics devices	61
	3.2	Basic plotting functions	65
	3.3	Enhancing plots	70

x Contents

	3.4	Conditioning plots	74
	3.5	Fine control of graphics	76
	3.6	Exercises	83
4	Prog	gramming in S	85
	4.1	Control structures	85
	4.2	Writing your own functions	90
	4.3	Finding errors	97
	4.4	Calling the operating system	103
	4.5	Some more advanced features. Recursion and frames	105
	4.6	Generic functions and object-oriented programming	110
	4.7	Using C and FORTRAN routines	113
	4.8	Exercises	119
5	Dist	ributions and Data Summaries	121
	5.1	Probability distributions	121
	5.2	Generating random data	123
	5.3	Data summaries	125
	5.4	Classical univariate statistics	129
	5.5	Density estimation	134
	5.6	Bootstrap and permutation methods	141
	5.7	Exercises	146
6	Line	ear Statistical Models	147
	6.1	A linear regression example	147
	6.2	Model formulae	153
	6.3	Regression diagnostics	157
	6.4	Safe prediction	161
	6.5	Factorial designs and designed experiments	162
	6.6	An unbalanced four-way layout	169
	6.7	Multistratum models	177
7	Gen	eralized Linear Models	183
	7.1	Functions for generalized linear modelling	187
	7.2	Binomial data	189
	7.3	Poisson models	196
	7.4	A negative binomial family	200

Contents xi

8	Robi	ust Statistics	203
	8.1	Univariate samples	204
	8.2	Median polish	210
	8.3	Robust regression	212
	8.4	Resistant regression	217
	8.5	Multivariate location and scale	222
9	Non-	linear Regression Models	223
	9.1	Fitting non-linear regression models	224
	9.2	Parametrized data frames	226
	9.3	Using function derivative information	226
	9.4	Non-linear fitted model objects and method functions	229
	9.5	Taking advantage of linear parameters	230
	9.6	Examples	231
	9.7	Assessing the linear approximation: profiles	237
	9.8	General minimization and maximum likelihood estimation	239
10	Mod	ern Regression	247
	10.1	Additive models and scatterplot smoothers	247
	10.2	Projection-pursuit regression	255
	10.3	Response transformation models	258
	10.4	Neural networks	261
	10.5	Conclusions	265
11	Surv	ival Analysis	267
	11.1	Estimators of survivor curves	269
	11.2	Parametric models	273
	11.3	Cox proportional hazards model	279
	11.4	Further examples	285
	11.5	Expected survival rates	298
	11.6	Superseded functions	299
12	Mult	ivariate Analysis	301
	12.1	Graphical methods	301
	12.2	Cluster analysis	311
	12.3	Discriminant analysis	315
	12.4	An example: Leptograpsus variegatus crabs	322

xii	Contents
-----	----------

13	Tree-based Methods	329
	13.1 Partitioning methods	330
	13.2 Cutting trees down to size	342
	13.3 Low birth weights revisited	345
14	Time Series	349
	14.1 Second-order summaries	352
	14.2 ARIMA models	361
	14.3 Seasonality	367
	14.4 Multiple time series	373
	14.5 Nottingham temperature data	376
	14.6 Other time-series functions	380
	14.7 Backwards compatibility	382
15	Spatial Statistics	383
	15.1 Interpolation and kriging	383
	15.2 Point process analysis	392
Re	ferences	397
Aŗ	ppendices	
_	Datasets and Software	407
_		407 408
_	Datasets and Software	
_	Datasets and Software A.1 Directories	408
_	Datasets and Software A.1 Directories	408 411
A	Datasets and Software A.1 Directories	408 411 412
A B C	Datasets and Software A.1 Directories	408 411 412 413
A B C	Datasets and Software A.1 Directories	408 411 412 413 429
A B C	Datasets and Software A.1 Directories	408 411 412 413 429 431 433
A B C	Datasets and Software A.1 Directories	408 411 412 413 429 431 433
A B C	Datasets and Software A.1 Directories	408 411 412 413 429 431 433 434