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Preface to the English Edition 

Many books on stability theory of motion have been published in various lan
guages, including English. Most of these are comprehensive monographs, with 
each one devoted to a separate complicated issue of the theory. Generally, the 
examples included in such books are very interesting from the point of view of 
mathematics, without necessarily having much practical value. Usually, they are 
written using complicated mathematical language, so that except in rare cases, 
their content becomes incomprehensible to engineers, researchers, students, and 
sometimes even to professors at technical universities. 

The present book deals only with those issues of stability of motion that most 
often are encountered in the solution of scientific and technical problems. This 
allows the author to explain the theory in a simple but rigorous manner without 
going into minute details that would be of interest only to specialists. Also, using 
appropriate examples, he demonstrates the process of investigating the stability of 
motion from the formulation of a problem and obtaining the differential equations 
of perturbed motion to complete analysis and recommendations. About one fourth 
of the examples are from various areas of science and technology. Moreover, some 
of the examples and the problems have an independent value in that they could be 
applicable to the design of various mechanisms and devices. 

The present translation is based on the third Russian edition of 1987. The author 
has complemented this translation by inserting some brief additional explanations, 
by including an appropriate list of references from publications in the United States 
and the United Kingdom and by adding proper exercises which in most cases are 
provided either with answers or with hints on how to solve them. The author hopes 
that this book will be useful for English-language readers. 

Professors Andrei L. Smirnov (St. Petersburg University, Russia) and Fred F. 



vi Preface to the English Edition 

Afagh (Carleton University, Canada) coordinated and managed all the necessary 
work to translate and edit the book. The author would like to express his most 
heartfelt gratitude to the translators and editors of this book. 

David R. Merkin 



Preface to the Third Russian Edition 

The present book is one of the textbooks published by the "Nauka" Publishing 
House as an addition to A Course In Theoretical Mechanics by N.V. Butenin, 
Ya.L. Lunc, and D.R. Merkin. The reason for publishing these textbooks is that 
students of technical universities need to become more closely acquainted with a 
number of more important topics than those dealt with in that introductory course. 
The textbooks included in the proposed series are devoted to such topics as an
alytical mechanics, stability theory of motion, theory of oscillations, theory of 
gyroscopes, and impact theory. This list is to be continued in the future. 

Numerous books have been published in the Soviet Union [to, 11, 13,23,27, 
29,56,59,67,72,130], in all of which the stability theory of motion is presented 
at various levels of completeness and from different points of view. Some of these 
are scientific monographs rather than textbooks. Generally, such monographs are 
intended for students from faculties of mathematics and theoretical mechanics 
with an intensive background in mathematics. Otherwise, these monographs are 
too complicated for engineering students at technical universities. 

Basically, the present book is written for students at technical universities as 
well as for engineers and scientists who use the theory of motion stability in 
their work. In this regard, the mathematics used in the book does not exceed the 
level of knowledge taught in most engineering faculties. Any required advanced 
mathematics is included in the book. 

In order to simplify the book, we initially consider autonomous systems. The 
stability of motion of nonautonomous systems is presented only in Chapter 7. 
Therefore, some theorems are proved under explicitly stated simplified conditions, 
with references to where the proof of these theorems under general conditions may 
be found. 



viii Preface to the Third Russian Edition 

The most effective method of studying stability of motion, i.e., the direct method 
of Liapunov and the stability in the first approximation, is the main focus of 
this book. Some chapters deal with this topic based upon the type of applied 
forces. Also, the stability of nonautonomous systems, including those in which 
the perturbed motion is described by linear differential equations with periodical 
coefficients, is presented. 

The application of the direct method of Liapunov to the stability analysis of 
automatic control systems is considered in Chapter 8, and finally, Chapter 9 is 
devoted to frequency methods of analyzing stability of motion. 

In recognition of the fact that those who are introduced to the stability theory of 
motion for the first time usually experience a great deal of difficulty in applying 
the theory to the solution of practical problems, much attention is allotted to the 
selection and solution of examples from various disciplines of science and tech
nology. A sizable number of the examples and problems stand by themselves as 
significant exercises. 

This book has grown out of several years of lectures by the author at the Faculty 
of Postgraduate Studies at Leningrad (St. Petersburg) State University. Numer
ous consultations with engineers and scientists at scientific research institutes in 
Leningrad on different aspects of the theory of motion stability and its applications 
have influenced the nature and content of this book. 

New examples are included in the third edition (the first and second editions 
were published in 1971 and 1976, respectively). Some recent articles published 
since 1976 are included in this edition. Also, in revising the text of the book some 
misprints have been corrected. 

The significant contributions and suggestions of Correspondent Members of the 
USSR Academy of Science A.I. Lurie, and V.V. Rumyantsev, as well as those of 
Associate Professors B.A. Smolnikov and B.L. Mintsberg in preparation of the 
first edition of this book are gratefully acknowledged. A major part of Chapter 9 
was prepared by A.H. Gelig. Many valuable suggestions on the second and third 
editions were made by Correspondent Member of the USSR Academy of Science 
V.V. Rumyantsev. The author would like to express his most heartfelt gratitude to 
all of these people. 

David R. Merkin 



From the Editors 

Several features make the book by Prof. D.R. Merkin unique among many books 
on the theory of stability of motion that have been published in various languages. 

The main advantage of the book is its simple yet simultaneously rigorous pre
sentation of the concepts of the theory, which often are presented in the context 
of applied problems with detailed examples demonstrating effective methods of 
solving practical problems. 

All the classical theories of Lagrange, Liapunov, Chetaev, Krasovsky, Thomson 
and Tait, Hurwitz, Nyquist and others as well as new results obtained by the author 
are presented in this text. These new results deal with investigating the stability of 
motion under gyroscopic, dissipative, and nonconservative position forces (Section 
6.7 and 6.8). Also presented are sufficient conditions for asymptotic stability of 
a system with nonlinear rigidity and damping that are explicit functions of time 
(Section 7.4). 

Examples constitute about 25% of the entire volume and cover various areas in 
science and engineering. Moreover, some of the examples possess an independent 
value in that they could be used in the analysis of various real structures and 
mechanisms. 

The above features have made the Introduction to the Theory of Stability of Mo
tion the most popular textbook in its field at faculties of matematics and mechanics 
as well as engineering faculties in Russian universities. The present translation is 
based on the third Russian edition of 1987. 

The present book is a result of the scientific cooperation of the Departments of 
Theoretical and Applied Mechanics of the Faculty of Mathematics and Mechanics 
at St. Petersburg State University in Russia and the Department of Mechanical and 
Aerospace Engineering at Carleton University in Ottawa, Canada. The author and 
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the editors would like to express their special thanks to Prof. John A. Goldak and 
Prof. D.R.F. Taylor of Carleton University, whose initial support of the program 
of scientific cooperation between St. Petersburg and Carleton University made it 
possible to prepare this manuscript. 

This work was supported in part by the Russian Foundation for Fundamental 
Research and the Soros International Foundation under grant # 5000. 

The editors translated and edited the book and did the typesetting using Jb.Tp'. 
We would like to thank our colleagues and students Mrs. Yu. Mochalova, Ms. 
O. Bukashkina, Mrs. V. Sergeeva, Mr. V. Piotrovich, Mr. A. Mironov, and Mr. I. Ma
lygin for their help in translating and typesetting the manuscript. We also would like 
to thank Mr. N. Filippov, Mr. S. Chernov, and Mr. S. Zakharov for their excellent 
drawings. 

Fred F. Afagh and Andrei L. Smirnov 
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