DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN

Introducing Game Theory and Its Applications

Elliott Mendelson

A CRC Press Company Boca Raton London New York Washington, D.C.

Contents

Introduction1					
Chapter 1 Combinatorial games9					
	1.1	Definition of combinatorial game	9		
	1.2	The fundamental theorem for combinatorial games	15		
	1.3	Nim	20		
	1.4	Hex and other games	27		
	1.5	Tree games	36		
	1.6	Grundy functions	38		
	1.7	Bogus Nim-sums	42		
Chapter 2 Two-person zero-sum games 53					
Citu	2.1	Games in normal form			
	2.2	Saddle points and equilibrium pairs			
	2.3	Maximin and minimax	60		
	2.4	Mixed strategies	66		
	2.5	2 × 2 matrix games	80		
	2.6	$2 \times n$, $m \times 2$, and 3×3 matrix games	86		
	2.7	Linear programming	97		
Chapter 3 The simpley method The fundamental					
theorem of duality Solution of two-person					
zero-sum games					
	3.1	Slack variables. Perfect canonical linear			
		programming problems	.109		
	3.2	The simplex method	. 113		
	3.3	Pivoting	. 117		
	3.4	The perfect phase of the simplex method	. 118		
	3.5	The Big M method	.122		
	3.6	Bland's rules to prevent cycling	.126		
	3.7	Duality and the simplex method	.131		
	3.8	Solution of game matrices	.135		

Chapter 4	Non-zero-sum games and k-person games14	ł 3			
4.1	The general setting	1 3			
4.2	Nash equilibria14	1 7			
4.3	Graphical method for finding Nash				
	equilibria for 2 × 2 matrices15	52			
4.4	Inadequacies of Nash equilibria				
	in non-zero sum games16	59			
4.5	The Nash arbitration procedure17	76			
4.6	Games with two or more players	34			
4.7	Coalitions	38			
4.8	Games in coalition form	<i>)</i> 1			
4.9	The Shapley value	94			
4.10	Imputations	98			
4.11	Strategic equivalence)1			
4.12	Stable sets)3			
Appendix 1 Finite probability theory					
Appendix	2 Utility theory21	19			
Appendix	3 Nash's theorem22	23			
Answers to selected exercises					
Diblio and har Diff.					
b1b110graphy					
Index					