mbridge University Press	
8-0-521-71977-3 - Groups, Graphs and Trees: An Introduction to the Geometry o	of
inite Groups	
hn Meier	
ble of Contents	
preinformation	

Contents

	Preface		
1	Cayle	ey's Theorems	1
	1.1	Cayley's Basic Theorem	1
	1.2	Graphs	6
	1.3	Symmetry Groups of Graphs	10
	1.4	Orbits and Stabilizers	15
	1.5	Generating Sets and Cayley Graphs	17
	1.6	More Cayley Graphs	22
	1.7	Symmetries of Cayley Graphs	29
	1.8	Fundamental Domains and Generating Sets	30
	1.9	Words and Paths	37
2	Grou	ps Generated by Reflections	44
3	Groups Acting on Trees		
	3.1	Free Groups	54
	3.2	\mathbb{F}_3 is a Subgroup of \mathbb{F}_2	65
	3.3	Free Group Homomorphisms and	
		Group Presentations	67
	3.4	Free Groups and Actions on Trees	70
	3.5	The Group $\mathbb{Z}_3 * \mathbb{Z}_4$	73
	3.6	Free Products of Groups	79
	3.7	Free Products of Finite Groups are Virtually Free	83
	3.8	A Geometric View of Theorem 3.35	87
	3.9	Finite Groups Acting on Trees	89
	3.10	Serre's Property FA and Infinite Groups	90
4	Baun	nslag–Solitar Groups	100

Cambridge University Press
978-0-521-71977-3 - Groups, Graphs and Trees: An Introduction to the Geometry of
Infinite Groups
John Meier
Table of Contents
More information

viii		Contents		
5	Word 5.1 5.2 5.3	ls and Dehn's Word Problem Normal Forms Dehn's Word Problem The Word Problem and Cayley Graphs	$105 \\ 105 \\ 109 \\ 111$	
	5.4	The Cayley Graph of $BS(1,2)$	115	
6	A Finitely Generated, Infinite Torsion Group			
7	Regu 7.1 7.2 7.3 7.4 7.5	lar Languages and Normal Forms Regular Languages and Automata Not All Languages are Regular Regular Word Problem? A Return to Normal Forms Finitely Generated Subgroups of Free Groups	$ 130 \\ 130 \\ 136 \\ 140 \\ 141 \\ 143 $	
8		Lamplighter Group	145 151	
9		Geometry of Infinite Groups Gromov's Corollary, aka The Word Metric The Growth of Groups, I Growth and Regular Languages Cannon Pairs Cannon's Almost Convexity	162 162 168 172 175 179	
10	Thompson's Group			
11	11.1 11.2 11.3 11.4 11.5 11.6 11.7 Bibl	The Ends of Groups The Freudenthal–Hopf Theorem Two-Ended Groups Commensurable Groups and Quasi-Isometry <i>iography</i>	$ 198 \\ 198 \\ 202 \\ 205 \\ 208 \\ 211 \\ 212 \\ 217 \\ 227 \\ 230 $	
	Index			