Contents

Chapter 1. Introduction	1
1. The integrals and manifolds	2
2. History of the problem	
3. Summary of results	4 7
Chapter 2. The Decomposition of the Spaces	11
1. The spaces and maps	11
2. The geometry of the sets	16
Chapter 3. The Cohomology	27
1. The cohomology of $\mathfrak{K}_R(c,h)$	27
2. The cohomology of $\mathfrak{K}(c,h)$	29
3. The homeomorphism type of $\mathfrak{H}(c,h)$ and $\mathfrak{H}_R(c,h)$	35
4. The cohomology of $\mathfrak{M}_R(c,h)$	41
5. The cohomology of $\mathfrak{M}(c,h)$	55
Chapter 4. The analysis of $\mathfrak{K}(c,h)$ for equal masses	61
1. $y_1^2 + y_2^2$ as function of σ, τ for equal masses.	61
2. The semi-minor axis of the ellipse for equal masses	63
3. The graphs of $Z = f(X)$ and $Z = g(X)$ for equal masses	65
4. The semi-major axis of the ellipse for equal masses	69
5. The feasible region $\mathfrak{c}(c,h)$	70
6. $\mathfrak{K}_R(c,h)$ for equal masses	71
7. Orientation in $\mathfrak{K}(c,h)$	72
8. Positive energy	75
Chapter 5. The analysis of $\mathfrak{K}(c,h)$ for general masses	77
1. $y_1^2 + y_2^2$ as function of σ, τ for general masses.	77
2. The semi-minor axis of the ellipse	79
3. The graph of $Z = f(X)$ and $Z = g(X)$ for general masses	82
4. The semi-major axis of the ellipse for unequal masses	88
5. $\mathfrak{K}_R(c,h)$ for unequal masses	89
Bibliography	91