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Preface 

The formulation of laws of nature in terms of minimum principles has a 
long history that can be traced to Hero of Alexandria (c. 125 B.C.). He 
proved in his Catoptrics that when a ray of light is reflected by a mirror, 
the path actually taken from the object to the observer's eye is shorter 
than any other possible path so reflected. This principle was generalized 
by Fermat who postulated, around 1650, that light always propagates in 
the shortest time from one point to another, and deduced mathematically, 
from this principle, the law of refraction. The same Fermat anticipated the 
differential calculus by stating a necessary condition for the maximum or 
the minimum of a polynomial that is equivalent to the vanishing of its 
derivative. 

More ambitious was the aim of Maupertuis when he enunciated, around 
1750, his principle of least action as a rational and metaphysical basis for 
geometrical objects and mechanics. His statement was far from precise and, 
in the same year, Euler expressed it as an exact theorem of dynamics in 
an addendum to his famous book on the calculus of variations. This book 
contains the famous extension of the Fermat necessary condition for an 
extremum of a real function to the case of functionals of the type 

y-+ lb f(x,y(x),y'(x))dx, 

called the Euler-Lagrange equation after the more analytical treatment 
given shortly after by Lagrange. 

It will take some time, during which further necessary conditions for a 
maximum or a minimum will be derived by Legendre, Jacobi, Weierstrass, 
and others to realize with Volterra and Hadamard, at the turn of this 
century, that the calculus of variations is just a special chapter of a theory 
of extrema for real functions defined on function spaces, and to create the 
tools necessary to formulate, in this setting, the corresponding necessary 
conditions. 

The question of the existence of an extremum has a more recent history, 
a feature shared with the more general problem of existence theorems in 
mathematics. Gauss, who gave four demonstrations of the fundamental 
theorem of algebra, admitted without proof the existence of a minimum 
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for the functional <p given by 

over all sufficiently regular functions y whose restriction on the boundary 
an of the bounded domain n c R n is fixed. It was the origin of the so
called Dirichlet principle for the existence of a solution to the Dirichlet 
problem with data h on an, 

~y(x)=O, xEn 

y(x) = h(x), x E an. 
The long-waited justification of this principle by Arzela and Hilbert, around 
1900, was the stimulus for the creation of a systematic approach for getting 
conditions of existence for a minimum or a maximum of a functional. 

After some pioneering work of Lebesgue, it became clear with Tonelli's 
important contributions that the lower semi-continuity introduced by Baire 
in another context was the right type of continuity for a fruitful abstract 
formulation of the calculus of variations. The systematic development of 
functional analysis, and in particular the study of convex sets and reflex
ive Banach spaces, paved the way for a systematic development of sharp 
existence conditions. 

The creation of a general theory of periodic solutions of Hamiltonian sys
tems as a fundamental step in understanding the structure of their solution 
set was one of the major motivations of Poincare's monumental mathemat
ical work. Besides many other contributions, Poincare initiated the varia
tional treatment of those questions. In particular, he made use of Jacobi's 
form of the least action principle to study the closed orbits of a conservative 
system with two degrees of freedom. He also considered the related question 
of the existence of geodesics. However, despite the rigorous treatment of the 
closed orbits of dynamical systems with two degrees of freedom by Whit
taker, and the related work of Signorini, Tonelli, and Birkhoff, and despite 
the fact that Birkhoff minimax theory was the impetus for Morse theory 
and Lusternik-Schnirelman approach to critical point theory, progress to
ward a global variational approach for the periodic solutions of Hamiltonian 
systems was very slow. 

A notable exception was Seifert's use in 1948 of Jacobi's form of the least 
action principle and differential geometry to prove the existence of an even 
T-periodic solution when the Hamiltonian is the sum of a kinetic and a 
potential energy term. This was generalized by Weinstein in the late 70s, 
who proved in particular, by similar methods, that an autonomous system 
with Hamiltonian H such that H-l(1) is a manifold bounding a compact 
convex region always has a closed orbit in H- 1(1). 

The fundamental difficulty in applying the naive idea of finding the peri
odic solutions of a general Hamiltonian system through the critical points 
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of its Hamiltonian action on a suitable space of periodic functions lies in 
the fact, already observed by Birkhoff, that this action is unbounded from 
below and from above. This makes the use of the well-developed direct 
method of the calculus of variations (which deals with absolute minima) 
unapplicable, except in some particular second order systems already con
sidered in the 20s by Lichtenstein and Hamel. 

However, in the mid 60s, extensions of the minimax approach (in partic
ular of Lusternik-Schnirelman theory) and of the Morse theory to functions 
defined on Banach manifolds were given by Palais, Smale, Rothe, Clark, 
Ambrosetti, Rabinowitz, and others. In the late 70s, Rabinowitz initiated 
the use of those methods in the study of periodic solutions of Hamiltonian 
systems. Later, a dual least action principle was introduced by Clarke and 
extensively developed by Clarke, Ekeland, and others. More recently, Morse 
theory and an extension of it due to Conley have provided further insight 
into those questions. 

The aim of this book is to initiate the reader to those fundamental tech
niques of critical point theory and apply them to periodic solutions prob
lems for Hamiltonian systems. Those illustrations have been chosen either 
because of their importance in the various applications in mechanics, elec
tronics, and economics, or because of their mathematical importance. We 
hope that our style of presentation will be appealing to people trained and 
interested in ordinary differential equations. We have the feeling that criti
cal point theory, which has been mostly developed by specialists in differen
tial topology, partial differential equations, or optimization, should be made 
more popular among people working in ordinary differential equations. Of 
course, the variational methods developed here are directly applicable to 
partial differential equations problems at the expense of a substantial com
plication of the technical details. They can be found in a number of the 
references to the literature at the end of the book. 

The reader interested in other aspects of critical point theory can then 
consult the references given in the bibliographical notes ending each chapter 
as well as the following surveys and monographs: [AuEd, [Bercd, [Ber2], 
[BIOI], [Botl,2]' [Bre2], [Cesl], [Chal], [ChH I ], [Cla3], [Coni], [Corl], [Dei I], 
[Des I], [Eeld, [Eke5], [EkT.], [EkTuI], [Fenl], [Fun.], [Kli l], [Koz.] , [Kra2], 
[LjuI], [Maw2,3,5,1l]' [Mih], [Mor3], [Moy.], [Mrs2], [Nir2], [Rab2,6,12,13,14,19]' 
[Rocd, [Rot5], [Ryb l], [Schl], [Smol], [Str4,5] [SZU3], [Tond, [Vai l ,2]' [Vol l ,2], 
[VoPI], [WiI3,5], [YoU2], [Zehd, [Zei2]· 
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