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Preface 

Fluid dynamics is an ancient science incredibly alive today. Modern technol­
ogy and new needs require a deeper knowledge of the behavior of real fluids, 
and new discoveries or steps forward pose, quite often, challenging and diffi­
cult new mathematical {::oblems. In this framework, a special role is played 
by incompressible nonviscous (sometimes called perfect) flows. This is a 
mathematical model consisting essentially of an evolution equation (the 
Euler equation) for the velocity field of fluids. Such an equation, which is 
nothing other than the Newton laws plus some additional structural hypo­
theses, was discovered by Euler in 1755, and although it is more than two 
centuries old, many fundamental questions concerning its solutions are still 
open. In particular, it is not known whether the solutions, for reasonably 
general initial conditions, develop singularities in a finite time, and very little 
is known about the long-term behavior of smooth solutions. These and other 
basic problems are still open, and this is one of the reasons why the mathe­
matical theory of perfect flows is far from being completed. 

Incompressible flows have been attached, by many distinguished mathe­
maticians, with a large variety of mathematical techniques so that, today, this 
field constitutes a very rich and stimulating part of applied mathematics. The 
idea of writing the present book was motivated by the fact that, although 
there are many interesting books on the subject, no recent one, to our knowl­
edge, is oriented toward mathematical physics. By this we mean a book that 
is mathematically rigorous and as complete as possible without hiding the 
underlying physical ideas, presenting the arguments in a natural order, from 
basic questions to more sophisticated ones, proving everything and trying, at 
the same time, to avoid boring technicalities. This is our purpose. 

The book does not require a deep mathematical knowledge. The required 
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VI Preface 

background is a good understanding of the classical arguments of mathemat­
ical analysis, including the basic elements of ordinary and partial differential 
equations, measure theory and analytic functions, and a few notions of po­
tential theory and functional analysis. 

The exposition is as self-contained as possible. Several appendices, de­
voted to technical or elementary classical arguments, are included. This does 
not mean, however, that the book is easy to read. In fact, even if we tried to 
present the topics in an elementary fashion and in the simplest cases, the style 
is, in general, purely mathematical and rather concise, so that the reader 
quite often is requested to spend some time in independent thinking during 
the most delicate steps of the exposition. Some exercises, with a varying 
degree of difficulty (the most difficult are marked by *), are presented at the 
end of many chapters. We believe solving them is the best test to see whether 
the basic notions have been understood. 

The choice of arguments is classical and in a sense obligatory. The presen­
tation of the material, the relative weight of the various arguments, and the 
general style reflect the tastes of the authors and their knowledge. It cannot 
be otherwise. 

The material is organized as follows: In Chapter 1 we present the basic 
equations of motion of incompressible nonviscous fluids (the Euler equation) 
and their elementary properties. In Chapter 2 we discuss the construction of 
the solutions of the Cauchy problem for the Euler equation. In Chapter 3 we 
study the stability properties of stationary solutions. In Chapter 4 we intro­
duce and discuss the vortex model. In Chapter 5 we briefly analyze the ap­
proximation schemes for the solutions of fluid dynamical equations. Chap­
ter 6 is devoted to the time evolution of discontinuities such as the vortex 
sheets or the water waves. Finally, in Chapter 7 we discuss turbulent mo­
tions. This last chapter mostly contains arguments of current research and is 
essentially discursive. 

The final section of each chapter is generally devoted to a discussion of the 
existing literature and further developments. We hope that this will stimulate 
the reader to study and research further. 

The book can be read following the natural order of the chapters, but also 
along the following paths: 
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A possible criticism of the book is that two-dimensional flows are treated 
in much more detail than three-dimensional ones, which are, physically 
speaking, much more interesting. Unfortunately, for a mathematical trea­
tise, it cannot be otherwise: The mathematical theory of a genuine three­
dimensional flow is, at present, still poor compared with the rather rich anal­
ysis of the two-dimensional case to which we address many efforts. 

It is a pleasure to thank D. Benedetto, E. Caglioti, A.J. Chorin, P. Drazin, 
R. Esposito, T. Kato, D. Levi, R. Robert, and R. Temam for useful sugges­
tions and, particularly, P. Laurence and C. Maffei for their constructive criti­
cism in reading some parts of the present book. We are also grateful to H. 
Areffor having sent us the MacVortex program. We finally thank C. Vaughn 
for her advice in improving our English. 

Rome, Italy CARLO MARCHIORO 

MARIO PUL VIRENTI 
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