Undergraduate Texts in Mathematics

Editors F. W. Gehring P. R. Halmos

> Advisory Board C. DePrima I. Herstein J. Kiefer

Jerome Malitz

Introduction to Mathematical Logic

Set Theory Computable Functions Model Theory

Springer-Verlag New York Heidelberg Berlin J. Malitz Department of Mathematics University of Colorado Boulder, Colorado 80309 USA

Editorial Board

P.R. Halmos Managing Editor Indiana University Department of Mathematics Bloomington, Indiana 47401 USA

F.W. Gehring University of Michigan Department of Mathematics Ann Arbor, Michigan 48104 USA

AMS Subject Classification: 02-01, 04-01

With 2 Figures

Library of Congress Cataloging in Publication Data

Malitz, J.

Introduction to mathematical logic.

Bibliography: p. Includes index. 1. Logic, Symbolic and mathematical. I. Title. QA9.M265 511'.3 78-13588

All rights reserved.

No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag.

© 1979 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1979

987654321

ISBN-13 : 978-1-4613-9443-3 DOI : 10.1007 / 978-1-4613-9441-9 e-ISBN-13 : 978-1-4613-9441-9

For Sue, Jed, and Seth

Contents

Preface	ix
Glossary of Symbols	xi
Part I: An Introduction to Set Theory	
1.1 Introduction	1
1.2 Sets	1
1.3 Relations and Functions	6
1.4 Pairings	9
1.5 The Power Set	14
1.6 The Cantor-Bernstein Theorem	17
1.7 Algebraic and Transcendental Numbers	20
1.8 Orderings	21
1.9 The Axiom of Choice	27
1.10 Transfinite Numbers	31
1.11 Paradise Lost, Paradox Found (Axioms for Set Theory)	43
1.12 Declarations of Independence	51
Part II: An Introduction to Computability Theory	
2.1 Introduction	59
2.2 Turing Machines	60

viii		Contents
2.3	Demonstrating Computability without an Explicit	
	Description of a Turing Machine	68
2.4	Machines for Composition, Recursion, and the "Least Operator"	79
2.5	Of Men and Machines	89
2.6	Non-computable Functions	90
2.7	Universal Machines	95
2.8	Machine Enumerability	100
2.9	An Alternate Definition of Computable Function	105
2.10	An Idealized Language	110
2.11	Definability in Arithmetic	118
2.12	The Decision Problem for Arithmetic	120
2.13	Axiomatizing Arithmetic	124
2.14	Some Directions in Current Research	129
Part	III: An Introduction to Model Theory	
3.1	Introduction	135
3.2	The First Order Predicate Calculus	136
3.3	Structures	138
3.4	Satisfaction and Truth	142
3.5	Normal Forms	150
3.6	The Compactness Theorem	158
3.7	Proof of the Compactness Theorem	162
3.8	The Löwenheim-Skolem Theorem	167
3.9	The Prefix Problem	174
3.10	Interpolation and Definability	180
3.11	Herbrand's Theorem	185
3.12	Axiomatizing the Validities of L	187
3.13	Some Recent Trends in Model Theory	190
Subje	et Index	195
-		

Preface

This book is intended as an undergraduate senior level or beginning graduate level text for mathematical logic. There are virtually no prerequisites, although a familiarity with notions encountered in a beginning course in abstract algebra such as groups, rings, and fields will be useful in providing some motivation for the topics in Part III.

An attempt has been made to develop the beginning of each part slowly and then to gradually quicken the pace and the complexity of the material. Each part ends with a brief introduction to selected topics of current interest.

The text is divided into three parts: one dealing with set theory, another with computable function theory, and the last with model theory. Part III relies heavily on the notation, concepts and results discussed in Part I and to some extent on Part II. Parts I and II are independent of each other, and each provides enough material for a one semester course.

The exercises cover a wide range of difficulty with an emphasis on more routine problems in the earlier sections of each part in order to familiarize the reader with the new notions and methods. The more difficult exercises are accompanied by hints. In some cases significant theorems are developed step by step with hints in the problems. Such theorems are not used later in the sequence.

The part dealing with set theory is intended to provide a notational and conceptual framework for areas of mathematics outside of logic as well as to introduce the student to those topics that are of particular interest to those working in the foundations of set theory.

We hope that the part of the text devoted to computable functions will be of interest to those who intend to work with real world computers. We believe that the notation, methodology, and results of elementary logic should be a part of a general mathematics program and are of value in a wide variety of disciplines within mathematics and outside of mathematics.

Boulder, Colorado March 1979

J. MALITZ

Glossary of Symbols

()	2	f^{-1}	7
{····}	2	f↑C	7
1	2	f•g	7
N N	2	~	9
N'	2	≺,≼	15
Q	2	$(\mathbf{R}, <), (\mathbf{O}, <), (\mathbf{I}, <),$	22
Q ⁺	2	< <u>^</u>	
R	2	(N, <)	23
R ⁺	2	Ordα	33
$\{x:\cdots\}$	2	≦	34
Ø	2	Card	36
E	2	c(x)	37
\subseteq , \supseteq , \subset , \supset	2, 3	ZF	38
U	3	ZFC	46
$\bigcup X$	4	= =	51
$\bigcup A_i$	4	M(t)	61
ieI		Sum	63
\cap	4	C	63
$\cap X$	4	P_{r}	63
B-A	4	Pred	63
P(X)	5	Prod	69
A × B	6	Mult	70
[B] ₁	6	Pow	71
Dom R	7	Diff'	71
Ranz <i>R</i>	7	$m \doteq n$	71
1-1	7		75
$f: A \rightarrow B$	7	$\forall x \leq y$	75
ĂВ –	7	$P(\bar{n}, x)$	75
fIC1	7	Prime	75
J L - J	•	111110	15

Prim	75	In	101
Exp'	76	Halt	101
Max	77	¥	103
$M t \rightarrow s$	80	Э	103
'n	80	Rec	107
compress	80	Rem	108
		L	(200 also 126)
	82	~	(see also 150)
Ň		≈ \/ ^ _	111
мм		V,/ ¬ ∀ ٦	111
	82	•, _	111
M_1 , M_1	-	() []	111
M		Trm	111
K Y	82	$t\langle z \rangle$	112
M_1 M_2		Fm	113
→M.M¢	82	F	114
,		F	124
ann k	83	Cons _s	129
сорук	05	Prfs	129
		P	133
shift right	84	NP	133
		τ	136
shift left	84	Fm,	137
		A ⊂ B	140
erase	84	B †s	140
erase		\cong_{g},\cong	140
# k	91	z(a)	142
TS	95	$t^{\mathfrak{A}}\langle z \rangle$	142
STP	95	$\mathfrak{A} \models \varphi \langle z \rangle$	142
	05	ThA	144
decode	95	==	144
]		$\operatorname{Mod}\Sigma$	144
code	98	<u>୩</u> (୬)	147
Exp	98	Π_{F}	166
RR	98	α α	167
RC	98	ી સ	109
NP	99	$\bigcup_{\alpha} \mathfrak{A}_{\alpha}$	170
NS	99	$\alpha < k$ S(B, Y)	177
NST	99	Mar 29	178
T	99	₩~r~ ∀∃-formula	178
STP	99	$Th_{u} K$	178
Row	100	****	
Mach	101		

xii