Cambridge University Press 978-1-107-02103-7 - Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory Francesco Maggi Table of Contents <u>More information</u>

Contents

	Preface		<i>page</i> xiii	
	Nota	tion	xvii	
	PAR	T I RADON MEASURES ON \mathbb{R}^n	1	
1		er measures	4	
1	1.1	Examples of outer measures	4	
	1.1	Measurable sets and σ -additivity	7	
	1.2	Measurable sets and b -additivity Measure Theory and integration	9	
2	Borel and Radon measures			
	2.1	Borel measures and Carathéodory's criterion	14	
	2.2	Borel regular measures	16	
	2.3	Approximation theorems for Borel measures	17	
	2.4	Radon measures. Restriction, support, and push-forward	19	
3	Hau	sdorff measures	24	
	3.1	Hausdorff measures and the notion of dimension	24	
	3.2	\mathcal{H}^1 and the classical notion of length	27	
	3.3	$\mathcal{H}^n = \mathcal{L}^n$ and the isodiametric inequality	28	
4	Radon measures and continuous functions			
	4.1	Lusin's theorem and density of continuous functions	31	
	4.2	Riesz's theorem and vector-valued Radon measures	33	
	4.3	Weak-star convergence	41	
	4.4	Weak-star compactness criteria	47	
	4.5	Regularization of Radon measures	49	
5	Diffe	rentiation of Radon measures	51	
	5.1	Besicovitch's covering theorem	52	

Cambridge University Press	
978-1-107-02103-7 - Sets of Finite Perimeter and Geometric Variational Problems: A	۱n
Introduction to Geometric Measure Theory	
Francesco Maggi	
Table of Contents	
More information	

viii		Contents	
	5.2	Lebesgue–Besicovitch differentiation theorem	58
	5.3	Lebesgue points	62
6	Two 1	further applications of differentiation theory	64
	6.1	Campanato's criterion	64
	6.2	Lower dimensional densities of a Radon measure	66
7	Lipso	chitz functions	68
	7.1	Kirszbraun's theorem	69
	7.2	Weak gradients	72
	7.3	Rademacher's theorem	74
8	Area	formula	76
	8.1	Area formula for linear functions	77
	8.2	The role of the singular set $Jf = 0$	80
	8.3	Linearization of Lipschitz immersions	82
	8.4	Proof of the area formula	84
	8.5	Area formula with multiplicities	85
9	Gaus 9.1 9.2 9.3	s–Green theorem Area of a graph of codimension one Gauss–Green theorem on open sets with C^1 -boundary Gauss–Green theorem on open sets with almost C^1 -boundary	89 89 90 93
10	Recti	fiable sets and blow-ups of Radon measures	96
	10.1	Decomposing rectifiable sets by regular Lipschitz images	97
	10.2	Approximate tangent spaces to rectifiable sets	99
	10.3	Blow-ups of Radon measures and rectifiability	102
11	11.1	ential differentiability and the area formula Area formula on surfaces Area formula on rectifiable sets Gauss–Green theorem on surfaces Notes	106 106 108 110 114
	PAR	FII SETS OF FINITE PERIMETER	117
12	Sets (of finite perimeter and the Direct Method	122
	12.1	Lower semicontinuity of perimeter	125
	12.2	Topological boundary and Gauss–Green measure	127
	12.3	Regularization and basic set operations	128
	12.4	Compactness from perimeter bounds	132

Cambridge University Press
978-1-107-02103-7 - Sets of Finite Perimeter and Geometric Variational Problems: An
Introduction to Geometric Measure Theory
Francesco Maggi
Table of Contents
More information

		Contents	ix
	12.5	Existence of minimizers in geometric variational problems	136
	12.6	Perimeter bounds on volume	141
13	13.1 13.2	coarea formula and the approximation theorem The coarea formula Approximation by open sets with smooth boundary	145 145 150
	13.3	The Morse–Sard lemma	154
14	The I 14.1 14.2	Euclidean isoperimetric problem Steiner inequality Proof of the Euclidean isoperimetric inequality	157 158 165
15	Redu	ced boundary and De Giorgi's structure theorem	167
	15.1 15.2	Tangential properties of the reduced boundary Structure of Gauss–Green measures	171 178
16	Feder	rer's theorem and comparison sets	183
	16.1	Gauss-Green measures and set operations	184
	16.2	Density estimates for perimeter minimizers	189
17		and second variation of perimeter	195
	17.1	Sets of finite perimeter and diffeomorphisms	196
	17.2	Taylor's expansion of the determinant close to the identity	198
	17.3	First variation of perimeter and mean curvature	200
	17.4 17.5	Stationary sets and monotonicity of density ratios Volume-constrained perimeter minimizers	204 208
	17.5	Second variation of perimeter	208
18		g boundaries of sets of finite perimeter	211
10	18.1	The coarea formula revised	215
	18.2	The coarea formula on \mathcal{H}^{n-1} -rectifiable sets	213
	18.3	Slicing perimeters by hyperplanes	225
19	Eaui	librium shapes of liquids and sessile drops	229
	19.1		230
	19.2	The Schwartz inequality	237
	19.3	A constrained relative isoperimetric problem	242
	19.4	Liquid drops in the absence of gravity	247
	19.5	A symmetrization principle	250
	19.6	Sessile liquid drops	253
20		otropic surface energies	258
	20.1	Basic properties of anisotropic surface energies	258
	20.2	The Wulff problem	262

Cambridge University Press
978-1-107-02103-7 - Sets of Finite Perimeter and Geometric Variational Problems: An
Introduction to Geometric Measure Theory
Francesco Maggi
Table of Contents
More information

х		Contents	
	20.3	Reshetnyak's theorems Notes	269 272
	PART OF S	T III REGULARITY THEORY AND ANALYSIS INGULARITIES	275
21)-perimeter minimizers	278
21	21.1	Examples of (Λ, r_0) -perimeter minimizers	278
	21.2		280
	21.3	The $C^{1,\gamma}$ -reguarity theorem	282
	21.4	e .	282
	21.5	Compactness for sequences of (Λ, r_0) -perimeter	
		minimizers	284
22	Exces	ss and the height bound	290
	22.1	Basic properties of the excess	291
	22.2	The height bound	294
23	The I	ipschitz approximation theorem	303
	23.1	The Lipschitz graph criterion	303
	23.2	The area functional and the minimal surfaces equation	305
	23.3	The Lipschitz approximation theorem	308
24	The r	everse Poincaré inequality	320
	24.1	Construction of comparison sets, part one	324
	24.2	Construction of comparison sets, part two	329
	24.3	Weak reverse Poincaré inequality	332
	24.4	Proof of the reverse Poincaré inequality	334
25	Harn	ionic approximation and excess improvement	337
	25.1	Two lemmas on harmonic functions	338
	25.2	The "excess improvement by tilting" estimate	340
26	Iterat	tion, partial regularity, and singular sets	345
	26.1	The $C^{1,\gamma}$ -regularity theorem in the case $\Lambda = 0$	345
	26.2	The $C^{1,\gamma}$ -regularity theorem in the case $\Lambda > 0$	351
	26.3	$C^{1,\gamma}$ -regularity of the reduced boundary, and the	
		characterization of the singular set	354
	26.4	C^1 -convergence for sequences of (Λ, r_0) -perimeter	
		minimizers	355
27	-	er regularity theorems	357
	27.1	Elliptic equations for derivatives of Lipschitz minimizers	357
	27.2	Some higher regularity theorems	359

Cambridge University Press
978-1-107-02103-7 - Sets of Finite Perimeter and Geometric Variational Problems: An
Introduction to Geometric Measure Theory
Francesco Maggi
Table of Contents
More information

		Contents	xi
28	Analy	ysis of singularities	362
	28.1		364
	28.2	Blow-ups at singularities and tangent minimal cones	366
	28.3	Simons' theorem	372
	28.4	Federer's dimension reduction argument	375
	28.5	Dimensional estimates for singular sets	379
	28.6	Examples of singular minimizing cones	382
	28.7	A Bernstein-type theorem	385
		Notes	386
	PAR	FIV MINIMIZING CLUSTERS	391
29	Exist	ence of minimizing clusters	398
	29.1	Definitions and basic remarks	398
	29.2	Strategy of proof	402
	29.3	Nucleation lemma	406
	29.4	Truncation lemma	408
	29.5	Infinitesimal volume exchanges	410
	29.6	Volume-fixing variations	414
	29.7	Proof of the existence of minimizing clusters	424
30	Regu	larity of minimizing clusters	431
	30.1	Infiltration lemma	431
	30.2	Density estimates	435
	30.3	Regularity of planar clusters	437
		Notes	444
	Refer	ences	445
	Index		453