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INTRODUCTION 

The classical potential theory is, in a sense, a study of the Laplace 

equation Au=O. It has been clarified that second order elliptic, and 

some parabolic, partial differential equations share many potential 

theoretic properties with the Laplace equation. An axiomatic potential 

theory tries to develop a unified method of treating these equations. 

In an axiomatic potential theory, we start with defining a harmonic 

space (X, ~) or (X, ~ ), where X is locally compact Hausdorff space 

and ~ (resp. ~) is a sheaf of linear spaces of continuous functions 

(resp. convex cones of lower semicontinuous functions) which are called 

"harmonic" (resp. "hyperharmonic"). There are several different kinds 

of harmonic spaces so far introduced. Among them, the following three 

are the most well-established: 

(a) Brelot's harmonic space (X, ~) (see [6], [7], [16], etc.); 

(b) Harmonic spaces (X, ~) given in Bauer [i] and in Boboc-Constantines- 

cu-Cornea [23; 

(c) Harmonic space (X, ~) proposed in Constantinescu-Cornea [ill. 

On any of these harmonic spaces, we can naturally develop a theory of 

superharmonic functions and potentials, including the Perron-Wiener's 

method for Dirichlet problems, balayage theory and even integral re- 

presentation of potentials; and thus a fairly large part of the 

classical potential theory is covered also by axiomatic theory. 

There are, however, some important parts in the classical potential 

theory which involve the notion of Dirichlet integrals. Due to the 

fact that only topological notions and some order relations are 

involved in an axiomatic potential theory, it is impossible to define 

differentiation of functions without further structures on X. However, 

it appears that with some reasonable additional structure for ~ or 

, we can consider a notion corresponding to the gradient of 

functions on a harmonic space. 

As an illustration, let us consider the case where X is an euclidean 

domain and the harmonic sheaf ~ is given by the solutions of the 

second order differential equation 
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$2u Bu 

Lu m ~ aij ~-x~ * Z b i ~ + cu : O, 

where aij , hi, c are functions on X with certain regularity and (aij) 

is positive definite everywhere on X. Now, we have the following 

equality: 

~f Bg : 
2 ~ aij ~--Qxi ~x j L(fg) - fLg - gLf + fgLl. 

~f 3g 
This shows that the function Z aij ~xi ~-~-Tx " (which, by an abuse of 

] 
terminology, we call mutual [radient of f and g) can be expressed in 

terms of L. Therefore, in an axiomatic theory, once a notion correspon- 

ding to the operator L is introduced, then mutual gradients of functions 

can be defined by the above equation. 

The purpose of the present lectures is to define the notion of (mutual) 

gradients of functions on harmonic spaces following the above idea, 

to show that this notion enjoys some basic properties possessed by the 

3f 8g 
form g aij ~ ~-~7. and to develop some theories involving the notion 

of Dirichlet integrals in the axiomatic setting. 

As a matter of fact, we define the gradients of functions as measures, 

which we call gradient measures. The definition and the verification 

of basic properties of gradient measures can be carried out on general 

harmonic spaces in the sense of Constantineseu-Cornea [ii]. Thus, in 

Part I, we give a theory on general harmonic spaces. Sections §i and 

§2 are preparatory and almost all materials in these sections are 

taken from Part I of [ii]. In §3, we give the definition of gradient 

measures and prove basic properties. This section is nearly identical 

with [283. 

In order to obtain richer results, it becomes necessary for us to 

restrict ourselves to self-adjoint harmonic spaces. Self-adjointness 

of a harmonic space is defined by the existence of consistent system 

of symmetric Green functions (see §4 for details); its prototype is 

the space given by solutions of the equation of the form Au:cu 

(e: a function). Thus, in Part II and Part III, we develop our theory 

on self-adjoint harmonic spaces. The main theme of Part II is Green's 

formula. In §4, we study Green potentials and in §5 we establish 
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Green's formula for a harmonic function and a potential both with 

finite energy. Most of the materials in Part II are taken from [24] 

(and also [22], [23]), but in these lectures arrangements and proofs 

are often different from those in [24] and the final form of Green's 

formula is improved. Part III is devoted to the study of various 

spaces of Dirichlet-finite or energy-finite functions. Spaces of 

harmonic functions are mainly discussed in §6. In §7, we consider a 

functional completion to define those functions which correspond to 

continuous BLD-functions in the classical theory (cf. [12], [53). 

Finally in §8, we shall show that some part of the theory of Royden 

boundary (cf. [29], [i0]) can be also developed in the axiomatic 

theory and a Neumann problem can be discussed (cf. [19], [203 for the 

classical case). 

Presentations of these lectures are almost self-contained. The biggest 

exception is that we use without proof the existence of Green functions 

and the integral representation theorem for potentials on Brelot's 

harmonic spaces. For these one may refer to [16 3 and [ii]. Some 

examples are given without detailed explanations. In the Appendix, 

networks are studied as examples of harmonic spaces. 

Terminology and notation 

Given a topological space X and a subset A of X, we denote by ~ the 
o 

closure of A, A the interior of A and ~A the boundary of A. For two 

sets A,B, A\B means the difference set. The family of all open subsets 

of X is denoted by ~X" A connected open set is called a domain. 

By a function, we shall always mean an extended real valued function. 

A continuous function will mean a finite-valued one. The set of all 

continuous functions on X is denoted by ~(X), and the set of all 

f~ ~(X) having compact supports in X is denoted by Co(X). The support 

of f is denoted by Supp f. Given a set A~X and a class ~ of functions 

on A, we say that ~ separates points of A if for any x,y%A, x~y, 

there are f,g~ satisfying f(x)g(y) ~ f(y)g(x) (with convention 

0.~ = ~. 0 = 0). For two classes ~i' ~2 of finite valued functions, 

~1- ~2 = [ f l - f 2  1 f l E ~ l , f 2 (  ~2 }" For a class ~ of func t ions ,  

For a locally compact space X, a measure on X will mean a (signed) 

real Radon measure on X. The set of all measures on X is denoted 
+ 

by )99(X). For ~% m(X), u and ~ denotes the positive part and the 



+ 
negative part of ~, and IUl : ~ + ~ . For ~% ~ (X) and f£ C(X), 

f~ is the measure defined by (f~)(~) = ~(f~) for ~% ~o(X). 

Restriction of a function or a measure to a set A is denoted by 

"IA. 

By a sheaf of functions on X (resp. a sheaf of measures on X), we 

mean a mapping ¢ defined on ~X satisfying the following three 

conditions: 

(a) for any U% ~X , ~(U) is a set of functions (resp. measures) on U; 

(b) if U,V£ ~X' UCV and ~(V), then ~IV~ ~(U); 

(c) if (U u) is a subfamily of %' ~ is a function (resp. measure) 

on ~/u%I U% and if 9~U % ~(U u) for all ~%I, then ~6~(~u~iUu). 

The mapping ~: U ~ ~(U) is a sheaf, which is called the sheaf 

of measures on X. 

For a locally compact space X with a countable base, a sequence 

C U for each {Un] ef relatively compact open sets U n such that ~n n+l 

n and ~k/U n = X is called an exhaustion of X. 




